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This paper investigates the evolution of global quantum discord (GQD) and quan-
tum Fisher information (QFI) of the interaction of multiple two-level atomic systems 
(TLS) with a single thermal field mode and a non-linear Kerr medium (NLKM) con-
sidering the cases of intrinsic decoherence and its absence. Results indicate that in-
creasing the number of atomic systems (N) while maintaining the NLKM parameter 
constant χ leads to higher GQD and QFI values for both intrinsic intrinsic decoher-
ence cases. With rising χ, the GQD values decrease but the oscillation rate of the 
GQD increases. The presence of intrinsic decoherence does not significantly reduce 
the GQD quasi-static value compared to the no-decoherence scenario for certain χ 
values. At the same time, a different trend is observed for higher χ values. The av-
erage QFI value rises with reduced oscillation amplitudes for higher χ values and 
larger N subsystems. Unlike the GQD, higher χ values aid in maintaining average 
QFI in the presence of intrinsic decoherence. For moving TLS, changing χ does not 
alter the oscillation periods of the GQD and QFI. The GQD values decrease with 
increased χ in the moving system case, while the QFI improves with higher χ values. 
Additionally, higher average thermal photons within the system suppress the GQD 
and QFI values and decrease oscillation amplitudes for both quantifiers.
Key words: GQD, QFI, quantum entanglement, multipartite quantum system,  

NLKM, Tavais-Cumming model, intrinsic decoherence 

Introduction

In quantum mechanics, two atoms can achieve entanglement through non-linear, 
non-degenerate two-photon interactions with a two-mode thermal field. Quantum entanglement 
between two qubits can be facilitated by interactions involving one or two modes, especially 
when dipole-dipole interactions are at play [1]. This phenomenon is essential in quantum infor-
mation science, where numerous applications depend on reliable methods for creating entangled 
states. Techniques for achieving entanglement include utilizing spins in solid-state systems, su-
perconducting circuits, or neutral atoms and ions held within cooled, confined environments such 
as cavities. Many applications also require maximally entangled states for optimal functional-
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ity. However, maintaining these pure entangled states is challenging due to decoherence, often 
resulting from a quantum system’s interaction with its environment or non-classical processes 
like entanglement. Addressing the quantum entanglement of mixed states remains a key area 
of research in quantum information. Studies such as those by Kim et al. [2] have examined en-
tanglement between two identical TLS undergoing one-photon transitions due to a single-mode 
thermal field, demonstrating that initially unentangled atoms can become entangled in a chaotic 
field with minimal information. Zhang [3] expanded on Kim’s work by analyzing cases where 
atoms are slightly phase-shifted relative to the thermal field, exploring the implications for at-
om-atom quantum entanglement. Zhou et al. [4] explored non-linear two-photon interactions 
with a single-mode thermal field, showing that entanglement induced by non-linear interactions 
surpasses that from linear ones. Further studies on quantum entanglement driven by thermal 
fields are discussed in [5-7]. The interaction between a TLS and a radiation field represents the 
most straightforward problem in matter-radiation coupling. This interaction was first modeled by 
Jaynes and Cummings [8]. Later, this model was extended to account for the interaction between 
a four-level atom and a single quantized mode of the radiation field, incorporating the rotating 
wave approximation (RWA) [9]. Theoretical studies have since justified the need to consider 
atomic motion’s impact on the Jaynes-Cummings model (JCM), with researchers using both an-
alytical and numerical methods to explore this [10-12]. A notable outcome of these interactions 
is quantum entanglement [13], a cornerstone that sets quantum information theory apart from 
classical theories. Quantum entangled states are fundamental to quantum computation, quan-
tum communication [14], quantum information processing [15-17], and quantum cryptography 
[18,19]. In quantum information, measures such as von Neumann entropy are often used to quan-
tify quantum entanglement. The time evolution of field entropy provides insight into quantum 
entanglement degree over time. The dynamics of a four-level atom interacting with a single 
radiation field mode in a lossless cavity have been explored from multiple perspectives [20-22], 
with further extensions considering atomic motion and field mode structure [23]. The JCM has 
been expanded and adapted across various fields, including research on multi-atom interactions, 
multi-mode fields, Stark shifts, and Kerr non-linearity [24, 25].

 The Cramer-Rao inequality establishes limits on the precision of parameter estima-
tion in quantum measurements, while QFI plays a central role in quantum metrology and esti-
mation theory. The QFI effectively measures how distinguishable parameters are when encoded 
in quantum states, thus serving as a key metric for estimation accuracy [26-29].

Milburn [30] developed an intrinsic decoherence model that posits a quantum system 
evolves via a stochastic sequence of identical unitary transformations over brief time intervals. 
This model introduces a slight modification the traditional Schrodinger equation, which, in turn, 
influences the von Neumann equation governing the density operator of the system. In Milburn’s 
framework, the structure of the energy eigenstate basis naturally reduces the off-diagonal com-
ponents of the density operator, achieving intrinsic decoherence without the typical dissipation 
associated with standard decay. The degradation observed is influenced only by phase. 

Bipartite quantum discord has been widely extended to multipartite states to effec-
tively quantify quantum correlations in larger systems [31, 32]. A measure known as GQD is 
introduced in [33] as a symmetric generalization of bipartite discord, designed specifically to 
assess quantum correlations in multipartite scenarios [33-36]. 

The primary focus of this paper is to examine the dynamics of QFI and quantum 
entanglement in a multi-TLS system interacting with a thermal field within an NLKM. We 
calculate both the GQD and QFI for the multi-TLS set-up, considering cases with and without 
intrinsic decoherence.
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Quantum Fisher information 

 The classical Fisher information (CFI) for each distinct occurrence with one un-
known parameter θ can be articulated:
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In the aforementioned equation the probability density pj(θ)
 
signifies the substantial 

and evident impact of the fixed parameter on the measurement outcome {xj} for a certain ob-
servable X. The CFI can be defined as the inverse variance of the asymptotic normality of a 
maximum-likelihood estimator. In quantum metrology, the QFI serves a vital and beneficial 
function. It can be employed for the precise measurement of an unknown parameter [37], which 
is associated with the inverse of the QFI.

The QFI in terms of the symmetric logarithmic derivative (SLD) D and density matrix 
(DM) ρ(θ)can be provided:
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where D is the substantiates the subsequent equation:
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The DM spectral decomposition is defined:
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According to eq. (4), the QFI corresponding to θ is denoted by [38]:
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where λk > 0 and λk + λk′ > 0. The first (second) term indicate the QFI (CFI). The trace over the 
field is used to calculate the atomic-QFI. Consequently, we will be able to articulate the atomic 
QFI of the associated bipartite density operator ρAB as [39]:
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where D(θ, t) is the designs the SLD of the quantum score [40], which will be represented:
( ) ( ) ( ) ( ) ( )

, 1 , , , ,
2

AB
AB AB

t
D t t t D t

ρ θ
θ ρ θ ρ θ θ

θ
∂

 = + ∂
(7)

Model dynamics and wavefunction

We explore the Tavais-Cumming (TC) model [41], which has been extensively ana-
lyzed and holds potential for application in multipartite quantum systems. For two identical TLS 
A and B interacting with a single-mode field, the TC Hamiltonian is provided in [41]. Here, we 
investigate the model to incorporate a cavity filled with NLKM and move two, three, and four 
TLS. The 3rd-order non-linear polarizability of a non-linear media is a component of the non-lin-
ear Kerr effect. The field displays a phase shift that is intensity-dependent during this process. 
The Kerr medium’s refractive index is inversely correlated with the strength of the field:
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2
0 2n n n E= + (8)

where n2 is the Kerr constant and the typical refractive index of a weak field is, and n2 indicates 
how quickly the refractive index changes with optical intensity. Under the rotating wave ap-
proximation (RWA) and in the presence of the NLKM, the total TC Hamiltonian of stationary 
N-TLS interacting with electromagnetic field H^

T [42] can be expressed:
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where â (σ^
j¯ ) and â+ (σ^

j
+) are the annihilation (lowering) and creation (raising) operators of the 

cavity field (jth TLS), respectively, and the inversion operator of the atomic system is. The field 
and atomic transition frequencies are ω0 and ω, respectively. The multi-TLS-field coupling is 
represented by g. The Kerr effect is described by the parameter χ, where χ is the Kerr parameter. 
The TLS is moving through a cavity of length, L, at a velocity of v, so eq. (9) will then become:
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where Ω(t) is the cavity field mode’s shape function that describes the impact of the motion of 
the TLS:
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where µ is the parameter for atomic motion is connected with the half wavelengths and the 
probability distribution of the atom within the cavity. Assuming that the atom speed is v = gL/π, 
this results:
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The TLS in the cavity moves in a sinusoidal manner by Ω in contrast to gt which is the 
static situation. We examine the system constituted by the interaction of a single-mode thermal 
field with an initial mixed state of N-TLS.

The atomic-field system can be stated as pure and mixed states that are being investi-
gated for their effects on the evolution of the quantifiers:

( ) ( ) ( ) 1 2 1 20 0 1  .. ..  ˆ ˆ f N Np p g g g g g gρ ρ ψψ = ⊗ − + … …  (13)
where the parameter for the statistical mixture is p with 0 ≤ p ≤ 1 and |gj⟩ and |ej⟩ being, respec-
tively, the atomic system’s ground and ex-cited states. The formula for the ket vector:
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where 0 ≤ θ ≤ π. The parameter θ in |ψ⟩ facilitates the analysis of how quantifiers are influenced by 
the superposition of atomic states. The ρf (0) is the state of the input thermal field which is given:
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The weight function is described:
( ) 1( 1)    n nP n n n − −= + (15)

where |n⟩ is the Fock state. The average photon number is represented:
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where kB is the Boltzmann constant, ωf – the frequency of the cavity mode, and T – the tem-
perature.

The set of acceptable basis states {| ψi⟩} can be expressed:
{ } 1 2 , 1 2 1 2| ..... , ..... , 1,...., ..... , )i N N Ng g g n N e g g n N e e e nψ = + + − (16)

The final state of the system at time, t, becomes:
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where ρ^ (t) can be expressed in terms of the initial states’ eigenvalues:
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with Em and |ψm⟩ (m = i, j) design the eigenvalues and eigenvectors of the density matrix at  
t = 0. After tracing the field over the state of the system, the final state of the atomic system is 
achieved i.e.:

	 ( ) ( )F AFˆ ˆTrT t tρ ρ =  

In terms of intrinsic decoherence, the density matrix can be given by [43]:
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and Ei, Ej and |ψi⟩, |ψj⟩ are the eigenvalues and eigenvectors of ρ^ (t).
In order to calculate the quantum correlations in our multipartite system we can use 

the form of the GQD [44] that is given:
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where |k⟩ is the eigenstates of ⊗N
j=1σ̂ z

j and R^ – the local qubit rotational operator acting on 
the jth qubit and expressed as:
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Discussions of numerical results

For N-TLS (N = 2, 3, and 4), we analyze the dynamic behavior of the GQD and QFI. 
The N-TLS is interacting with the thermal field where decoherence effects are also present. An 
NLKM of parameter, χ, is used to fill the cavity. We have numerically obtained the dynamics of 
the system with a 0.01-time step size.

Figure 1 illustrates the behavior of entanglement metrics for systems with two, three, 
and four TLS (two-level systems) in a NLKM under conditions where χ = 0.3, both with and with-
out intrinsic decoherence. The average thermal photon level is set at |α|2 = 3, with the system’s 
initial state being a mixed state with a statistical probability of p = 0.5 and an initial parameter  
θ = 3π/4. The QFI is calculated numerically based on the initial state parameter θ. For γ = 0, the 
magnitude of the GQD increases as the number of TLS, N, grows. This indicates that larger N 
values sustain stronger non-classical correlations and quantum entanglement, with the ampli-
tude of quantum oscillations in GQD rising accordingly. However, the behavior of QFI does 
not show a clear increase with additional TLS. A minor enhancement is observed for N = 3 and 
compared to N = 2, particularly early in scaled time for N = 4. As time progresses, QFI variation 
stabilizes for N = 3 and N = 4N, remaining largely consistent.

Figure 1. The dynamics of the quantifiers are shown in the figure;  
we have chosen the parameters n̄ = 3, θ = 3π/4, p = 0.5 and the other parameters as (µ, χ) = (0, 0, 3)

Further, intrinsic decoherence, GQD and QFI exhibit nearly equivalent quantum cor-
relations and information content for N = 2 and N = 3, while N = 4 shows a significant rise in 
quantum correlations. Initially, GQD starts at zero and then increases, whereas QFI begins at 
a maximum and gradually declines. Additionally, QFI demonstrates several zero crossings as 
time advances. When considering intrinsic decoherence with a strength of γ = 0.01, the quanti-
fier oscillations reduce. For GQD, the quantum correlations reach a quasi-steady-state, and the 
magnitude of this steady-state remains unaffected by intrinsic decoherence across different N 
values. In contrast, both the amplitude and oscillations of QFI are suppressed in the presence of 
intrinsic decoherence, and these oscillations decay more slowly than those of GQD, requiring 
more time to reach a quasi-steady-state. Under zero-intrinsic decoherence conditions, however, 
QFI displays a general decreasing trend.
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Figure 2 depicts the evolution of the QFI and GQD within a system in an NLKM with 
χ = 1. When γ = 0, the GQD behavior resembles that shown in fig. 1: both its magnitude and 
oscillation amplitude grow as N (the number of two-level systems, or TLS) increases. In contrast, 
while the QFI value rises with increasing N, its oscillation amplitude decreases. For γ = 0.01, 
the oscillations of both quantifiers diminish over time, with the GQD oscillations decaying more 
rapidly than those of the QFI. The GQD’s decay rate remains relatively constant as N changes, 
whereas for the QFI, oscillation decay accelerates with larger N values. When comparing the cas-
es with and without intrinsic decoherence, the GQD values are largely unaffected by the intrinsic 
decoherence, while the QFI values decrease in the presence of intrinsic decoherence.

Figure 2. The dynamics of the quantifiers are shown in the figure;  
we have chosen the parameters n̄ = 3, θ = 3π/4 and the other parameters as (µ, χ) = (0, 1)

Figure 3 illustrates the evolution of GQD and QFI in a system under an NLKM with 
χ = 3. When γ = 0, both the GQD value and its amplitude show a slight increase as the number 
of two-level systems, N, rises. The QFI values also grow with N, but their oscillation amplitude 
is significantly reduced. In the γ = 0.01 scenario, oscillations in both quantifiers gradually di-
minish over time. GQD, in particular, smoothly decays to a quasi-static value. Comparing γ = 0  
and γ = 0.01, we see a reduction in GQD with intrinsic decoherence, and the oscillation am-
plitude increases with N. QFI oscillations also decrease with γ = 0.01, as both QFI value and 
oscillation amplitude lessen with larger N. The overall dynamics of GQD and QFI with varying 
χ and γ values are summarized in figs. 1-3. For γ = 0, increasing χ results in lower GQD values 
across all N, especially pronounced in systems with N = 3 and N = 4, and faster oscillations for 
GQD. Under intrinsic decoherence, GQD’s quasi-static value remains stable at χ = 0.3 and χ = 
1 compared to the no-intrinsic decoherence case but reduces for χ = 3 with γ = 0.01. Meanwhile, 
for γ = 0, the average QFI increases with higher χ, though its oscillation amplitude decreases 
across all N. This effect is especially evident in N = 4N systems, where oscillation suppression 
is stronger than in N = 2N and N = 3N systems. With intrinsic decoherence present, the QFI av-
erage decreases at χ = 0.3 relative to γ = 0, while at χ = 1 and χ = 3, it remains consistent across 
both γ cases, with more suppressed oscillations for N = 4N. A comparison of GQD and QFI 
across different χ and γ values reveals key insights. With γ = 0, GQD’s average value decreases 
as rises, while QFI’s average value increases with a larger χ. The quasi-static GQD values are 
further suppressed as χ grows, while QFI values show improvement with increased χ.
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Figure 3. The dynamics of the quantifiers are shown in the figure;  
we have chosen the parameters n̄ = 3, θ = 3π/4 and the other parameters as (µ, χ) = (0, 3)

To examine the dynamics of GQD and QFI in the presence of an NLKM and a thermal 
field, we study a moving atomic system. Figure 4 illustrates this behavior with χ = 0.3, using pa-
rameters p = 0.5, θ = 3π/4, and average thermal photons |α|2 = 3, starting from a mixed initial state. 
The GQD dynamics reveal periodic oscillations for both γ = 0 and γ = 0.01 across all values of N. 
The presence of intrinsic decoherence does not influence GQD in this configuration, and the pe-
riodic zero-point decay and increased oscillation amplitude in GQD become more pronounced 
with larger N. The QFI also shows periodic behavior in the presence of atomic motion, with 
peak values remaining the same across N values when γ = 0. However, under γ = 0.01, QFI val-
ues are suppressed relative to the zero-intrinsic decoherence scenario. Notably, maxima in GQD 
align with minima in QFI. For χ = 1 and χ = 3, represented in figs. 5 and 6, the GQD retains its 
periodic behavior across both γ cases. No significant reduction in GQD value is observed under 
γ = 0.01 compared to γ = 0, and minima appear consistently across all N values. The GQD value 
rises with N, and QFI maintains a periodic trend for both γ settings, with peak QFI values con-

Figure 4. The dynamics of the quantifiers are shown in the figure;  
we have chosen the parameters n̄ = 3, θ = 3π/4, and the other parameters as (µ, χ) = (1, 0, 3)



Almalki, S., et al.: Quantum Correlations and Fisher Information ... 
THERMAL SCIENCE: Year 2025, Vol. 29, No. 1A, pp. 347-358	 355

sistent across N. Under γ = 0.01, QFI shows no significant decay across N values. In the case of  
χ = 3, GQD and QFI maintain periodic oscillations for both γ conditions. While GQD oscilla-
tion amplitude grows with N, QFI amplitude decreases as N increases. For γ = 0.01 with χ = 3, 
GQD values decline relative to γ = 0, while QFI values remain unaffected by intrinsic decoher-
ence in this case. 

In comparing fig. 4 through fig. 6, the oscillation period for both GQD and QFI re-
mains consistent despite changes in χ. The GQD values decrease as χ increases, whereas QFI 
values improve with higher χ. Additionally, the amplitude of oscillations for both GQD and QFI 
reduces with increasing χ, with the most significant decrease observed at χ = 3 for N = 4N. We 
examine how varying the average thermal photon number influences system dynamics. Figure 
7 presents the evolution of GQD and QFI for initial average thermal photons, with |α|2 set at 
4 and 5. Parameters are chosen as N = 2, χ = 1, p = 0.5, and θ = 3π/4. As the average thermal 
photon number increases, both GQD and QFI values display suppressed dynamics, along with 
a decrease in their oscillation amplitude. Notably, the GQD values remain unaffected by intrin-
sic decoherence when the average thermal photon number changes. In contrast, the QFI value 
decreases with intrinsic decoherence for |α|2 = 4, while it remains stable for |α|2 = 5. 

Figure 6. The dynamics of the quantifiers are shown in the figure;  
we have chosen the parameters n̄ = 3, θ = 3π/4, and the other parameters as (µ, χ) = (1, 3)

Figure 5. The dynamics of the quantifiers are shown in the figure;  
we have chosen the parameters n̄ = 3, θ = 3π/4, and the other parameters as (µ, χ) = (1, 1)
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Figure 7. The GQD and QFI’s dynamic behavior under the situation of two distinct  
average thermal photons; we have taken |α|2 = 4 and 5, θ = 3π/4, p = 0, and χ = 0.3

Conclusion

In recent years, there has been a great deal of interest in the study of the evolution of 
multipartite quantum correlations and entanglement in open quantum systems interacting with 
the environment and in more realistic cavity circumstances. We have examined the multipartite 
quantum correlations and the entanglement of systems comprising N-TLS due to their poten-
tial application in the development of quantum information. This work has discussed the time 
evolution of GQD and QFI for multiple-TLS interacting with a single-mode thermal field and 
an NLKM. We examined the dynamics of the GQD and QFI for two, three, and four TLS in 
motion, both with and without intrinsic decoherence. We found that, by keeping the parameter 
the same, the GQD and QFI values increased by increasing N for both γ cases. The GQD values 
of the system decreased with an increase in χ. The rapidness of oscillation of the GQD also 
increased with an increase in χ. In the presence of intrinsic decoherence, the GQD quasi-static 
value did not reduce with respect to the average value it without intrinsic decoherence for χ = 
0.3 and χ = 1 cases. However, we observed a reduction in the quasi-steady value of the GQD for 
χ = 3 as compared to the zero decoherence case. The QFI average value increases for the system 
if χ value is increased. The fluctuating amplitude decreased by increasing χ. For the larger N 
subsystems, the amplitude of oscillation of the QFI has a further increasing. Unlike the GQD 
case, larger χ values assisted and maintained the average QFI value in the presence of intrinsic 
decoherence. For the case of the moving atomic system, the period of oscillations of the GQD 
and QFI did not change by changing χ. For the moving system case, the values of the GQD 
decreased with the increase in χ. Whereas the QFI improved with the increase in χ. We observed 
that by increasing the average thermal photons inside the system, the value of the GQD and QFI 
was suppressed in the dynamics. The amplitude of oscillation of the GQD and QFI diminished 
with an increase in the average thermal photons.
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