THERMAL SCIENCE

International Scientific Journal

ON GENERALIZED LOCAL FRACTAL CALCULUS ASSOCIATE WITH GAUGE INTEGRAL AND APPLICATIONS

ABSTRACT
In this work, a new integral so called *F α-integral with respect to local fractal derivatives are introduced. Several properties of *F α-integrals are discussed. Fundamental theorem for *F α-integrable functions is also introduced. A relationship of F α and *F α integral is shown. Finally, as an application we solve fractal differential equation D αF[S αF (x)] = f[t, S αF (x)] with S αF(τ) = ξ in sense of *F α-integral.
KEYWORDS
PAPER SUBMITTED: 2024-07-19
PAPER REVISED: 2024-12-01
PAPER ACCEPTED: 2024-12-26
PUBLISHED ONLINE: 2025-02-16
DOI REFERENCE: https://doi.org/10.2298/TSCI240719003K
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2025, VOLUME 29, ISSUE Issue 1, PAGES [691 - 711]
REFERENCES
  1. Barnsley, M. F., Harrington Andrew N., The Calculus of Fractal interpolation Functions, Journal of Ap­proximation Theory, 57 (1989), pp. 14-34
  2. Gordon, R. G., The Integrals of Lebesgue, Denjoy, Perron and Henstock, American Mathematical Society, Providence, R. I., USA, 1994
  3. Mandelbrot, B. B., The Fractal Geometry of Nature, WH Freeman, New York, USA, 1982
  4. Falconer, J. J., The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, Cambridge, UK, 1985
  5. Jorgensen, P. E., Analysis and Probability: Wavelets, Signals, Fractals, Springer Science and BusinesMedia, Berlin, Germany, 2006, Vol. 234
  6. Lee, P. Y., Vyborny R., Integral: An Easy Approach after Kurzweil and Henstock, Cambridge University Press, Cambridge, UK, 2000
  7. Massopust, P. R., Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, New York, USA, 2017
  8. Gordon, N. L., Rood B., Introducing Fractal Geometry, Icon Books, Cambridge, UK, 2000
  9. Rogers C. A., Hausdorff Measures, Cambridge University Press, Cambridge, UK, 1998
  10. Wua, Z. H., et al., On Local Fractal Volterra Integral Equations in Fractal Heat Transfer, Thermal Science, 20 (2016), Suppl. 3, pp. S795-S800
  11. Golmankhaneh A. K., Fractal Calculus and its Application: Fα-Calculus, World Scientific Publishing Co. Pte. Ltd., Singapore, Singapore, 2023
  12. Majumder, M., Nanoscale Hydrodynamics-Enhanced Flow in Carbon Nanotubes, Nature, 438 (2005), 7064
  13. Parvate A., Gangal A. D., Calculus On Fractal Subsets Of Real Line-I: Formulation, Fractals, 17 (2009), 01, pp. 53-81
  14. Golmankhaneh, A. K., Baleanu D., On a New Measure on Fractals, Journal of Inequalities and Applica­tions, 522 (2013), 522
  15. Golmankhaneh, A. K., Baleanu D., Fractal Calculus Involving Gauge Function, Commun Non-Linear Sci Numer Simulat., 37 (2016), Aug., pp. 125-130
  16. Golmankhaneh, A. K., et al., Local fractal Fourier Transform and Applications, Computational Methods for Differential Equations, 10 (2022), 3, pp. 595-607
  17. Golmankhaneh, A. K., et al., About Sobolev Spaces on Fractals: Fractal Gradians and Laplacians, Aequat. Math., On-line first, doi.org/10.1007/s00010-024-01060-6, 2024

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence