THERMAL SCIENCE
International Scientific Journal
ON GENERALIZED LOCAL FRACTAL CALCULUS ASSOCIATE WITH GAUGE INTEGRAL AND APPLICATIONS
ABSTRACT
In this work, a new integral so called *F α-integral with respect to local fractal derivatives are introduced. Several properties of *F α-integrals are discussed. Fundamental theorem for *F α-integrable functions is also introduced. A relationship of F α and *F α integral is shown. Finally, as an application we solve fractal differential equation D αF[S αF (x)] = f[t, S αF (x)] with S αF(τ) = ξ in sense of *F α-integral.
KEYWORDS
PAPER SUBMITTED: 2024-07-19
PAPER REVISED: 2024-12-01
PAPER ACCEPTED: 2024-12-26
PUBLISHED ONLINE: 2025-02-16
THERMAL SCIENCE YEAR
2025, VOLUME
29, ISSUE
Issue 1, PAGES [691 - 711]
- Barnsley, M. F., Harrington Andrew N., The Calculus of Fractal interpolation Functions, Journal of Approximation Theory, 57 (1989), pp. 14-34
- Gordon, R. G., The Integrals of Lebesgue, Denjoy, Perron and Henstock, American Mathematical Society, Providence, R. I., USA, 1994
- Mandelbrot, B. B., The Fractal Geometry of Nature, WH Freeman, New York, USA, 1982
- Falconer, J. J., The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, Cambridge, UK, 1985
- Jorgensen, P. E., Analysis and Probability: Wavelets, Signals, Fractals, Springer Science and BusinesMedia, Berlin, Germany, 2006, Vol. 234
- Lee, P. Y., Vyborny R., Integral: An Easy Approach after Kurzweil and Henstock, Cambridge University Press, Cambridge, UK, 2000
- Massopust, P. R., Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, New York, USA, 2017
- Gordon, N. L., Rood B., Introducing Fractal Geometry, Icon Books, Cambridge, UK, 2000
- Rogers C. A., Hausdorff Measures, Cambridge University Press, Cambridge, UK, 1998
- Wua, Z. H., et al., On Local Fractal Volterra Integral Equations in Fractal Heat Transfer, Thermal Science, 20 (2016), Suppl. 3, pp. S795-S800
- Golmankhaneh A. K., Fractal Calculus and its Application: Fα-Calculus, World Scientific Publishing Co. Pte. Ltd., Singapore, Singapore, 2023
- Majumder, M., Nanoscale Hydrodynamics-Enhanced Flow in Carbon Nanotubes, Nature, 438 (2005), 7064
- Parvate A., Gangal A. D., Calculus On Fractal Subsets Of Real Line-I: Formulation, Fractals, 17 (2009), 01, pp. 53-81
- Golmankhaneh, A. K., Baleanu D., On a New Measure on Fractals, Journal of Inequalities and Applications, 522 (2013), 522
- Golmankhaneh, A. K., Baleanu D., Fractal Calculus Involving Gauge Function, Commun Non-Linear Sci Numer Simulat., 37 (2016), Aug., pp. 125-130
- Golmankhaneh, A. K., et al., Local fractal Fourier Transform and Applications, Computational Methods for Differential Equations, 10 (2022), 3, pp. 595-607
- Golmankhaneh, A. K., et al., About Sobolev Spaces on Fractals: Fractal Gradians and Laplacians, Aequat. Math., On-line first, doi.org/10.1007/s00010-024-01060-6, 2024