THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

DYNAMICS OF QUANTUM CORRELATIONS IN A TWO-PARAMETER CLASS SYSTEM UNDER QUANTUM NOISE

ABSTRACT
In this paper, we investigate the time evolution of quantum correlations in a two-qubit system influenced by an optical channel. The system's dynamics are analyzed in terms of concurrence (CN), Bell non-locality (BN), and trace distance discord (TDD), which quantify entanglement, non-local correlations, and quantum discord, respectively. Our model explores the impact of key parameters such as the beam-splitter angle, θ, channel parameter, λ, and angular frequency, ω, on these quantum correlations. The results show that CN and BN exhibit oscillatory behavior with periodic revivals, but tend to decay more rapidly under noisy conditions. Conversely, TDD demonstrates greater robustness, persisting even when CN and BN collapse, indicating the survival of quantum correlations in separable states. Higher noise strength and angular frequencies induce faster oscillations and revivals across all measures, with systems prepared with stronger initial quantum correlations showing increased resilience. This study highlights the robustness of quantum discord in noisy environments and its potential role in quantum information processing, even in the absence of entanglement.
KEYWORDS
PAPER SUBMITTED: 2024-08-05
PAPER REVISED: 2024-09-25
PAPER ACCEPTED: 2024-10-29
PUBLISHED ONLINE: 2025-01-25
DOI REFERENCE: https://doi.org/10.2298/TSCI2406193K
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2024, VOLUME 28, ISSUE Issue 6, PAGES [5193 - 5203]
REFERENCES
  1. Diehl, S., et al., Quantum States and Phases in Driven Open Quantum Systems with Cold Atoms, Nature Phys., 4 (2008), 11, pp. 878-883
  2. Sieberer, L. M., et al., Keldysh Field Theory for Driven Open Quantum Systems, Rep. Progr. Phys., 79 (2016), 9, 096001
  3. Fortin, S., et al., Decoherence: A Closed-System Approach, Brazilian J. Phys., 44 (2014), Aug., pp. 138-153
  4. de Almeida, A. O., et al., Semiclassical Evolution of Dissipative Markovian Systems, J. Phys. A, 42 (2009), 6, 065306
  5. Martinez, J. E., et al., Approximating Decoherence Processes for the Design and Simulation of Quantum Error Correction Codes on Classical Computers, IEEE Access, 8 (2020), Sept., pp. 172623-172643
  6. Schaller, G., Open Quantum Systems Far From Equilibrium, Springer, Berlin, Germany, 2014, Vol. 881
  7. Hayden, P., Sorce, J., A Canonical Hamiltonian for Open Quantum Systems, J. Phys. A, 55 (2022), 22, 225302
  8. Nielsen, M. A., Chuang, I. L., Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, Mass., USA, 2010
  9. Mohammed, N. I., et al., Witnessing Quantum Correlations in Two Coupled Quantum Dots under Intrinsic Decoherence, Alex. Eng. J., 69 (2023), Apr., pp. 521-527
  10. Paneru, D., et al., Entanglement: Quantum Or Classical, Rep. Prog. Phys., 83 (2020), 6, 064001
  11. Buchholz, D., Fredenhagen, K., Locality and the Structure of Particle States, Commun. Math. Phys., 84 (1982), Mar., pp. 1-54
  12. Reid, Margaret D., et al. Colloquium: The Einstein-Podolsky-Rosen Paradox: From Concepts to Applications, Rev. Mod. Phys., 81 (2009), 4, pp. 1727-1751
  13. Cowen, R., Space, Time, Entanglement, Nature, 527 (2015), 7578, pp. 290-293
  14. Clauser, J. F., Shimony, A., Bell's Theorem, Experimental Tests and Implications, Rep. Progr. Phys., 41 (1978), 12, 1881
  15. Aspect, A., et al., Experimental Test of Bell's Inequalities Using Time-Varying Analyzers, Phys. Rev. Lett., 49 (1982), 25, 1804
  16. Spiller, T. P., Quantum Information Processing: Cryptography, Computation, and Teleportation, Proc. IEEE, 84 (1996), 12, pp. 1719-1746
  17. Brunner, N., et al., Bell Non-Locality, Rev. Mod. Phys., 86 (2014), 2, pp. 419-478
  18. Rideout, D., et al., Fundamental Quantum Optics Experiments Conceivable with Satellites - Reaching Relativistic Distances and Velocities, Class. Quan. Grav., 29 (2012), 22, 224011
  19. Brugues, J. T., Characterizing Entanglement and Quantum Correlations Constrained by Symmetry, Springer, Berlin, Germany, 2016
  20. Abd-Rabbou, M. Y., et al., Probing Teleported Quantum Correlations in a two-Qubit System Inside a Coherent Field, Optik, 296 (2024), 171551
  21. Hu, X. M., et al., Progress in Quantum Teleportation, Nature Rev. Phys., 5 (2023), 6, pp. 339-353
  22. Gross, J. A., et al., Qubit Models of Weak Continuous Measurements: Markovian Conditional and Open-System Dynamics, Quantum Sci. Tech., 3 (2018), 2, 024005
  23. Greenfield, S., et al., Stabilizing Two-Qubit Entanglement with Dynamically Decoupled Active Feedback, Phys. Rev. Appl., 21 (2024), 2, 024022
  24. Gozdz, A., et al., Quantum Time And Quantum Evolution, Universe, 9 (2023), 6, 256
  25. Rahman, A. U., et al., Extremal Quantum Correlation Generation Using a Hybrid Channel, Sci. Rep., 13 (2023), 1, 16654
  26. Duan, L. M., Guo, G. C. . Preserving Coherence in Quantum Computation by Pairing Quantum Bits, Phys. Rev. Lett., 79 (1997), 10, 1953
  27. Liu, X., et al., Experimental Study of Entanglement Evolution in The Presence of Bit-Flip and Phase-Shift Noises, Opt. Laser Techn., 95 (2017), Oct., pp. 147-150
  28. Qi, X., et al., Measuring Coherence with Entanglement Concurrence, J. Phy. A, 50 (2017), 28, 285301
  29. Alotaibi, M. F., et al., Dynamics of an Atomic System Associated with a Cavity-Optomechanical System, Res. Phys., 37 (2022), 105540
  30. Paula, F. M., de Oliveira, T. R., Geometric Quantum Discord Through the Schatten 1-Norm, Phys. Rev. A 6, (2013), 87, 064101
  31. Rahman, A. U., et al., Extremal Quantum Correlation Generation Using A Hybrid Channel, Sci. Rep., 13 (2023), 1, 16654
  32. Haq, Z. U., et al., Coherent Manipulation of Giant Birefringent Goos-Hanchen Shifts by Compton Scattering Using Chiral Atomic Medium, Sci. Rep., 14 (2024), 1, 20821
  33. Brunner, N., et al., Bell Non-Locality, Rev. Mod. Phys., 86 (2014), 2, pp. 419-478
  34. Werner, R. F., Wolf, M. M., Bell Inequalities and Entanglement, Quantum Inf. Comp., 1 (2001), 3, pp. 1-25

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence