ABSTRACT
In this paper, we investigate the time evolution of quantum correlations in a two-qubit system influenced by an optical channel. The system's dynamics are analyzed in terms of concurrence (CN), Bell non-locality (BN), and trace distance discord (TDD), which quantify entanglement, non-local correlations, and quantum discord, respectively. Our model explores the impact of key parameters such as the beam-splitter angle, θ, channel parameter, λ, and angular frequency, ω, on these quantum correlations. The results show that CN and BN exhibit oscillatory behavior with periodic revivals, but tend to decay more rapidly under noisy conditions. Conversely, TDD demonstrates greater robustness, persisting even when CN and BN collapse, indicating the survival of quantum correlations in separable states. Higher noise strength and angular frequencies induce faster oscillations and revivals across all measures, with systems prepared with stronger initial quantum correlations showing increased resilience. This study highlights the robustness of quantum discord in noisy environments and its potential role in quantum information processing, even in the absence of entanglement.
KEYWORDS
PAPER SUBMITTED: 2024-08-05
PAPER REVISED: 2024-09-25
PAPER ACCEPTED: 2024-10-29
PUBLISHED ONLINE: 2025-01-25
THERMAL SCIENCE YEAR
2024, VOLUME
28, ISSUE
Issue 6, PAGES [5193 - 5203]
- Diehl, S., et al., Quantum States and Phases in Driven Open Quantum Systems with Cold Atoms, Nature Phys., 4 (2008), 11, pp. 878-883
- Sieberer, L. M., et al., Keldysh Field Theory for Driven Open Quantum Systems, Rep. Progr. Phys., 79 (2016), 9, 096001
- Fortin, S., et al., Decoherence: A Closed-System Approach, Brazilian J. Phys., 44 (2014), Aug., pp. 138-153
- de Almeida, A. O., et al., Semiclassical Evolution of Dissipative Markovian Systems, J. Phys. A, 42 (2009), 6, 065306
- Martinez, J. E., et al., Approximating Decoherence Processes for the Design and Simulation of Quantum Error Correction Codes on Classical Computers, IEEE Access, 8 (2020), Sept., pp. 172623-172643
- Schaller, G., Open Quantum Systems Far From Equilibrium, Springer, Berlin, Germany, 2014, Vol. 881
- Hayden, P., Sorce, J., A Canonical Hamiltonian for Open Quantum Systems, J. Phys. A, 55 (2022), 22, 225302
- Nielsen, M. A., Chuang, I. L., Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, Mass., USA, 2010
- Mohammed, N. I., et al., Witnessing Quantum Correlations in Two Coupled Quantum Dots under Intrinsic Decoherence, Alex. Eng. J., 69 (2023), Apr., pp. 521-527
- Paneru, D., et al., Entanglement: Quantum Or Classical, Rep. Prog. Phys., 83 (2020), 6, 064001
- Buchholz, D., Fredenhagen, K., Locality and the Structure of Particle States, Commun. Math. Phys., 84 (1982), Mar., pp. 1-54
- Reid, Margaret D., et al. Colloquium: The Einstein-Podolsky-Rosen Paradox: From Concepts to Applications, Rev. Mod. Phys., 81 (2009), 4, pp. 1727-1751
- Cowen, R., Space, Time, Entanglement, Nature, 527 (2015), 7578, pp. 290-293
- Clauser, J. F., Shimony, A., Bell's Theorem, Experimental Tests and Implications, Rep. Progr. Phys., 41 (1978), 12, 1881
- Aspect, A., et al., Experimental Test of Bell's Inequalities Using Time-Varying Analyzers, Phys. Rev. Lett., 49 (1982), 25, 1804
- Spiller, T. P., Quantum Information Processing: Cryptography, Computation, and Teleportation, Proc. IEEE, 84 (1996), 12, pp. 1719-1746
- Brunner, N., et al., Bell Non-Locality, Rev. Mod. Phys., 86 (2014), 2, pp. 419-478
- Rideout, D., et al., Fundamental Quantum Optics Experiments Conceivable with Satellites - Reaching Relativistic Distances and Velocities, Class. Quan. Grav., 29 (2012), 22, 224011
- Brugues, J. T., Characterizing Entanglement and Quantum Correlations Constrained by Symmetry, Springer, Berlin, Germany, 2016
- Abd-Rabbou, M. Y., et al., Probing Teleported Quantum Correlations in a two-Qubit System Inside a Coherent Field, Optik, 296 (2024), 171551
- Hu, X. M., et al., Progress in Quantum Teleportation, Nature Rev. Phys., 5 (2023), 6, pp. 339-353
- Gross, J. A., et al., Qubit Models of Weak Continuous Measurements: Markovian Conditional and Open-System Dynamics, Quantum Sci. Tech., 3 (2018), 2, 024005
- Greenfield, S., et al., Stabilizing Two-Qubit Entanglement with Dynamically Decoupled Active Feedback, Phys. Rev. Appl., 21 (2024), 2, 024022
- Gozdz, A., et al., Quantum Time And Quantum Evolution, Universe, 9 (2023), 6, 256
- Rahman, A. U., et al., Extremal Quantum Correlation Generation Using a Hybrid Channel, Sci. Rep., 13 (2023), 1, 16654
- Duan, L. M., Guo, G. C. . Preserving Coherence in Quantum Computation by Pairing Quantum Bits, Phys. Rev. Lett., 79 (1997), 10, 1953
- Liu, X., et al., Experimental Study of Entanglement Evolution in The Presence of Bit-Flip and Phase-Shift Noises, Opt. Laser Techn., 95 (2017), Oct., pp. 147-150
- Qi, X., et al., Measuring Coherence with Entanglement Concurrence, J. Phy. A, 50 (2017), 28, 285301
- Alotaibi, M. F., et al., Dynamics of an Atomic System Associated with a Cavity-Optomechanical System, Res. Phys., 37 (2022), 105540
- Paula, F. M., de Oliveira, T. R., Geometric Quantum Discord Through the Schatten 1-Norm, Phys. Rev. A 6, (2013), 87, 064101
- Rahman, A. U., et al., Extremal Quantum Correlation Generation Using A Hybrid Channel, Sci. Rep., 13 (2023), 1, 16654
- Haq, Z. U., et al., Coherent Manipulation of Giant Birefringent Goos-Hanchen Shifts by Compton Scattering Using Chiral Atomic Medium, Sci. Rep., 14 (2024), 1, 20821
- Brunner, N., et al., Bell Non-Locality, Rev. Mod. Phys., 86 (2014), 2, pp. 419-478
- Werner, R. F., Wolf, M. M., Bell Inequalities and Entanglement, Quantum Inf. Comp., 1 (2001), 3, pp. 1-25