THERMAL SCIENCE
International Scientific Journal
AN APPLICATION OF FRACTAL FRACTIONAL OPERATORS TO NON-LINEAR CHEN SYSTEMS
ABSTRACT
This paper employs the Atangana-Baleanu fractal-fractional operators to establish whether chaotic behavior is present or not in a non-linear modified Chen. The Chen exists and is unique under fixed point theory. To illustrate the applicability and efficiency of this method, numerical examples are provided to provide a better understanding of it. To verify the results in this paper, a circuit schematic has been drawn and a simulation has been conducted.
KEYWORDS
PAPER SUBMITTED: 2024-06-12
PAPER REVISED: 2024-09-10
PAPER ACCEPTED: 2024-10-11
PUBLISHED ONLINE: 2025-01-25
THERMAL SCIENCE YEAR
2024, VOLUME
28, ISSUE
Issue 6, PAGES [5169 - 5178]
- Strogatz, S. H., Non-Linear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Perseus Books, Cambridge, Mass., USA, 1994
- Lorenz, E. N., Deterministic Non-Periodic Flow, Journal of the Atmospheric Sciences, 20 (1963), Mar., pp. 130-141
- Rossler, O. E., An Equation for Continuous Chaos, Physics Letters A, 57 (1976), 5, pp. 397-398
- Rabinovich, M. I., Fabrikant, A. L., Stochastic Self-Modulation of Waves in Non-Equilibrium Media, Sov. Phys. JETP, 50 (1979), Aug., pp. 311-317
- Arneodo, A., et al., Possible New Strange Attractors with Spiral Structure, Communications in Mathematical Physics, 79 (1981), 4, pp. 573-579
- Sprott, J. C., Some Simple Chaotic Flows, Physical Review E, 50 (1994), Aug., pp. 647-650
- Chen, G., Ueta, T., Yet Another Chaotic Oscillator, International Journal of Bifurcation and Chaos, 9 (1999), 7, pp. 1465-1466
- Lu, J. Chen, G., A New Chaotic Attractor Coined, International Journal of Bifurcation and Chaos, 12 (2002), 03, pp. 659-661
- Shaw, R., Strange Attractors, Chaotic Behaviour and Information Flow, Zeitschrift für Naturforschung, 36 (1981), 1, pp. 80-112
- Feeny, B., Moon, F. C., Chaos in a Forced Dry-Friction Oscillator: Experiments and Numerical Modelling, Journal of Sound and Vibration, 170 (1994), 3, pp. 303-323
- Shimizu, T., Moroika, N., On the Bifurcation of a Symmetric Limit Cycle to an Asymmetric One in a Simple Model, Physics Letters A, 76 (1980), 3-4, pp. 201-204
- Liu, W., Chen, G., A New Chaotic System and Its Generation, International Journal of Bifurcation and Chaos, 13 (2003), 01, pp. 261-267
- Cai, G., Tan, Z., Chaos Synchronization of a New Chaotic System Via Non-Linear Control, Journal of Uncertain Systems, 37 (2007), 1, pp. 235-240
- Tigan, G., Opris, D., Analysis of a 3-D Chaotic System, Chaos, Solitons and Fractals, 36 (2008), 5, pp. 1315-1319
- Kennedy, G. P., Chaos in the Colpitts Oscillator, IEEE Transactions on Circuits and Systems I, 41 (1994), 11, pp. 771-774
- Wang, J., et al., Global Synchronization for Time Delay of WINDMI System, Chaos, Solitons and Fractals, 30 (2006), 3, pp. 629-635
- Zhou, W., et al., On Dynamics Analysis of A New Chaotic Attractor, Physics Letters A, 372 (2008), 36, pp. 5773-5777
- Li, D., A Three-Scroll Chaotic Attractor, Physics Letters A, 372 (2008), 4, pp. 387-393
- Toufik, M., Atangana, A., New Numerical Approximation of Fractional Derivative with Non-Local and Non-Singular Kernel: Application Chaotic Models, Eur. Phys. J. Plus, 132 (2017), 444
- Almutairi, N., Saber, S., On Chaos Control of Non-Linear Fractional Newton-Leipnik System Via Fractional Caputo-Fabrizio Derivatives, Sci. Rep., 13 (2023), 22726
- Saber, S., Control of Chaos in the Burke-Shaw system of fractal-Fractional Order in the Sense of Caputo-Fabrizio, Journal of Applied Mathematics and Computational Mechanics, 23 (2024), 1, pp. 83-96
- Almutairi, N., Saber, S., Chaos Control and Numerical Solution of Time-Varying Fractional Newton-Leipnik System Using Fractional Atangana-Baleanu Derivatives, AIMS Mathematics, 8 (2023), 11, pp. 25863-25887
- Almutairi, N., Saber, S., Application of a Time-Fractal Fractional Derivative with A Power-Law Kernel to the Burke-Shaw System Based on Newton's Interpolation Polynomials, MethodsX, 12 (2024), 102510
- Almutairi, N., Saber, S., Existence of Chaos and the Approximate Solution of the Lorenz-Lu-Chen System with the Caputo Fractional Operator, AIP Advances, 14 (2024), 1, 015112
- Ahmed, K. I. A., et al., Analytical Solutions For A Class Of Variable-Order Fractional Liu System under Time-Dependent Variable Coefficients, Results in Physics, 56 (2024), 107311
- Almutairi, N., et al., The Fractal-Fractional Atangana-Baleanu Operator for Pneumonia Disease: Stability, Statistical and Numerical Analyses, AIMS Mathematics, 8 (2023), 12, pp. 29382-29410
- Atangana A., Fractal-Fractional Differentiation and Integration: Connecting Fractal Calculus and Fractional Calculus to Predict Complex System, Chaos Solitons Fractals, 102 (2017), Sept., pp. 396-406
- Atangana, A., Aguilar, J. F. G., Decolonisation of Fractional Calculus Rules: Breaking Commutativity and Associativity to Capture More Natural Phenomena, Eur. Phys. J. Plus, 133 (2018), 166
- Atangana, A., Araz, I. S., New Numerical Method for Ordinary Differential Equations: Newton Polynomial, J. Comput. Appl. Math., 372 (2019), 112622
- Atangana, A., Araz, I. S., New Numerical Scheme with Newton Polynomial, Theory, Methods, and Applications, 1st ed., Academic Press, Cambridge, Mass., USA, 2021