THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

AN APPLICATION OF FRACTAL FRACTIONAL OPERATORS TO NON-LINEAR CHEN SYSTEMS

ABSTRACT
This paper employs the Atangana-Baleanu fractal-fractional operators to establish whether chaotic behavior is present or not in a non-linear modified Chen. The Chen exists and is unique under fixed point theory. To illustrate the applicability and efficiency of this method, numerical examples are provided to provide a better understanding of it. To verify the results in this paper, a circuit schematic has been drawn and a simulation has been conducted.
KEYWORDS
PAPER SUBMITTED: 2024-06-12
PAPER REVISED: 2024-09-10
PAPER ACCEPTED: 2024-10-11
PUBLISHED ONLINE: 2025-01-25
DOI REFERENCE: https://doi.org/10.2298/TSCI2406169A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2024, VOLUME 28, ISSUE Issue 6, PAGES [5169 - 5178]
REFERENCES
  1. Strogatz, S. H., Non-Linear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Perseus Books, Cambridge, Mass., USA, 1994
  2. Lorenz, E. N., Deterministic Non-Periodic Flow, Journal of the Atmospheric Sciences, 20 (1963), Mar., pp. 130-141
  3. Rossler, O. E., An Equation for Continuous Chaos, Physics Letters A, 57 (1976), 5, pp. 397-398
  4. Rabinovich, M. I., Fabrikant, A. L., Stochastic Self-Modulation of Waves in Non-Equilibrium Media, Sov. Phys. JETP, 50 (1979), Aug., pp. 311-317
  5. Arneodo, A., et al., Possible New Strange Attractors with Spiral Structure, Communications in Mathematical Physics, 79 (1981), 4, pp. 573-579
  6. Sprott, J. C., Some Simple Chaotic Flows, Physical Review E, 50 (1994), Aug., pp. 647-650
  7. Chen, G., Ueta, T., Yet Another Chaotic Oscillator, International Journal of Bifurcation and Chaos, 9 (1999), 7, pp. 1465-1466
  8. Lu, J. Chen, G., A New Chaotic Attractor Coined, International Journal of Bifurcation and Chaos, 12 (2002), 03, pp. 659-661
  9. Shaw, R., Strange Attractors, Chaotic Behaviour and Information Flow, Zeitschrift für Naturforschung, 36 (1981), 1, pp. 80-112
  10. Feeny, B., Moon, F. C., Chaos in a Forced Dry-Friction Oscillator: Experiments and Numerical Modelling, Journal of Sound and Vibration, 170 (1994), 3, pp. 303-323
  11. Shimizu, T., Moroika, N., On the Bifurcation of a Symmetric Limit Cycle to an Asymmetric One in a Simple Model, Physics Letters A, 76 (1980), 3-4, pp. 201-204
  12. Liu, W., Chen, G., A New Chaotic System and Its Generation, International Journal of Bifurcation and Chaos, 13 (2003), 01, pp. 261-267
  13. Cai, G., Tan, Z., Chaos Synchronization of a New Chaotic System Via Non-Linear Control, Journal of Uncertain Systems, 37 (2007), 1, pp. 235-240
  14. Tigan, G., Opris, D., Analysis of a 3-D Chaotic System, Chaos, Solitons and Fractals, 36 (2008), 5, pp. 1315-1319
  15. Kennedy, G. P., Chaos in the Colpitts Oscillator, IEEE Transactions on Circuits and Systems I, 41 (1994), 11, pp. 771-774
  16. Wang, J., et al., Global Synchronization for Time Delay of WINDMI System, Chaos, Solitons and Fractals, 30 (2006), 3, pp. 629-635
  17. Zhou, W., et al., On Dynamics Analysis of A New Chaotic Attractor, Physics Letters A, 372 (2008), 36, pp. 5773-5777
  18. Li, D., A Three-Scroll Chaotic Attractor, Physics Letters A, 372 (2008), 4, pp. 387-393
  19. Toufik, M., Atangana, A., New Numerical Approximation of Fractional Derivative with Non-Local and Non-Singular Kernel: Application Chaotic Models, Eur. Phys. J. Plus, 132 (2017), 444
  20. Almutairi, N., Saber, S., On Chaos Control of Non-Linear Fractional Newton-Leipnik System Via Fractional Caputo-Fabrizio Derivatives, Sci. Rep., 13 (2023), 22726
  21. Saber, S., Control of Chaos in the Burke-Shaw system of fractal-Fractional Order in the Sense of Caputo-Fabrizio, Journal of Applied Mathematics and Computational Mechanics, 23 (2024), 1, pp. 83-96
  22. Almutairi, N., Saber, S., Chaos Control and Numerical Solution of Time-Varying Fractional Newton-Leipnik System Using Fractional Atangana-Baleanu Derivatives, AIMS Mathematics, 8 (2023), 11, pp. 25863-25887
  23. Almutairi, N., Saber, S., Application of a Time-Fractal Fractional Derivative with A Power-Law Kernel to the Burke-Shaw System Based on Newton's Interpolation Polynomials, MethodsX, 12 (2024), 102510
  24. Almutairi, N., Saber, S., Existence of Chaos and the Approximate Solution of the Lorenz-Lu-Chen System with the Caputo Fractional Operator, AIP Advances, 14 (2024), 1, 015112
  25. Ahmed, K. I. A., et al., Analytical Solutions For A Class Of Variable-Order Fractional Liu System under Time-Dependent Variable Coefficients, Results in Physics, 56 (2024), 107311
  26. Almutairi, N., et al., The Fractal-Fractional Atangana-Baleanu Operator for Pneumonia Disease: Stability, Statistical and Numerical Analyses, AIMS Mathematics, 8 (2023), 12, pp. 29382-29410
  27. Atangana A., Fractal-Fractional Differentiation and Integration: Connecting Fractal Calculus and Fractional Calculus to Predict Complex System, Chaos Solitons Fractals, 102 (2017), Sept., pp. 396-406
  28. Atangana, A., Aguilar, J. F. G., Decolonisation of Fractional Calculus Rules: Breaking Commutativity and Associativity to Capture More Natural Phenomena, Eur. Phys. J. Plus, 133 (2018), 166
  29. Atangana, A., Araz, I. S., New Numerical Method for Ordinary Differential Equations: Newton Polynomial, J. Comput. Appl. Math., 372 (2019), 112622
  30. Atangana, A., Araz, I. S., New Numerical Scheme with Newton Polynomial, Theory, Methods, and Applications, 1st ed., Academic Press, Cambridge, Mass., USA, 2021

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence