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This paper employs the Atangana-Baleanu fractal-fractional operators to estab-
lish whether chaotic behavior is present or not in a non-linear modified Chen. The 
Chen exists and is unique under fixed point theory. To illustrate the applicability 
and efficiency of this method, numerical examples are provided to provide a better 
understanding of it. To verify the results in this paper, a circuit schematic has been 
drawn and a simulation has been conducted.
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Introduction

There is a great deal of interest in the chaos literature when it comes to studying cha-
otic behavior in nature and physical systems. Chaotic systems are non-linear systems that are 
highly sensitive to initial conditions, topologically mixed, and possess dense periodic orbits 
[1]. Due to Lorenz’s [2] discovery of a 3-D chaotic system of a weather model, chaos theory 
underwent significant development. As a result of this research, several 3-D chaotic systems 
were discovered in the chaos literature, including Rossler [3], Rabinovich and Fabrikant [4], 
Arneodo et al. [5], Sprott [6], Chen and Ueta [7], Lu and Chen [8], Shaw [9], Feeny and Moon 
[10], Shimizu and Moroika [11], Liu and Chen [12], Cai and Tai [13], Tigan and Opris [14] sys-
tem, Colpitt’s oscillator system [15], Windmi system [16], and Zhou et al. [17] system. There 
have been numerous 3-D chaotic systems discovered recently, including Li [18] systems. The 
aforementioned three chaotic systems have been combined into a single chaotic system, unified 
Liu and Chen [12] chaotic system, which is described:
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where ϑ ∈ (0.8, 1].
Fractal fractionals are observed in various natural systems, including excitation-relax-

ation systems and natural oscillatory systems. These dynamics are characterized by long-mem-
ory behaviors, heavy-tailed distributions, and short-range autocorrelation dependence. The 
Atangana-Balanu fractal-fractional operators (ABFFO) is a fractional derivative operator that 
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incorporates fractal geometry into the fractional calculus framework. This enables a more ac-
curate representation of complex systems with fractal behavior see [19-30]. Using AB FFO, we 
investigate the dynamical behavior of the modified Chen family: 
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We verify the existence and unique nature of the solution system, as well as examine 
its qualitative characteristics. Using the AB derivative, the model is analyzed for its actual 
behavior. Finally, a numerical simulation has been carried out which supports the biological 
results.

Preliminaries

Consider ϕ ∈ C((a, b), R) which is fractal differentiable on (a, b) of order 0 < * ≤ 1. 
The fractal-fractional derivation operator for ϕ in the AB settings of order 0 < κ1 ≤ 1, with the 
generalized kernel of the Mittag-Leffler type is introduced [27]:

	

( )*, 1 11 1
* 11 10

d( ) = ( ) ( ) d
1 1d

t
FFP

t
AB

t s E t s s
t

κ κ
κ

κ κ
φ φ

κ κ
 
− − − − ∫



where 

	
( ) 1

1 1 * * *
1

d ( ) ( ) ( )= 1 and = lim( ) d
t s

s t sAB
s t

κ φ φ φκ κ
κ ς

→
−

− +
Γ − 

Let ϕ be the same function considered previously [27]. Then, the fractal-fractional 
integration operator in the AB settings for ϕ of order 0 < κ1 ≤ 1 with the kernel of Mittag-Leffler 
type is given:
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Existence and uniqueness of the proposed model

Utilizing the AB fractional operators, the system of equations can be expressed:
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Based on the fixed point theory, we will demonstrate that the model possesses a 
unique solution. Therefore, the proposed model can be reformulated as the integration remains 
differentiable:
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Additionally, we have:
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Using the Banach space framework J = C × C × C, where C [0, K] denotes the norm, 
we can examine the existence theorem:

	
1 2 3

[0, ]
( ), ( ), ( )max

t k
v t v t v t

∈
=F

We establish an operator: 
	 Φ : J → J
defined by

	

** 1
1

1

* *1 11

1 1 0

(1 )( )( ) = (0) ( , ( ))
( )

( ) ( , ( ))d
( ) ( )

t

tt t t
CD

w m t m t t m
CD

β

β β

β α
ν

α

α
ν

α α

−

− −

−
Φ + +

+ −
Γ ∫

F F F

F

Assuming that the non-linear function n (t, F(t)) satisfies the Lipschitz condition and 
growth requirements, we consider:
	– (A1) For all F ∈ J, there exists a constant Cψ > 0, and Gψ such that 

	 ( , ( )) ( )t t C t Gψ ψν ≤ +F F

	– (A2) For all F, F ̄ ∈ J, there exists a constant Hψ > 0 such that 

	 | ( , ( )) ( , ( )) | | ( ) ( ) |t t t t H t tψν ν− ≤ −F F F F

Assuming that Conditions (A1) and (A2) hold true, and that n : [0, K] × J → L is a 
continuous function, then the proposed model possesses a unique solution.
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Proof. We will first demonstrate the continuity of. Since n is bounded, so is Φ. 
Let:
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For any F ∈ J, we can conclude:
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The operator Φ is uniformly bounded by homogeneity as long as the function is  
Φ(α1, w). Let t1, t2 ≤ K for the equicontinuity of Φ . Consider: 
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Finally, we establish:
	 Ψ(F) < 1

for a fixed point Φ. The aforementioned ensures that there exists a unique solution the proposed 
system of fractional differential equations, satisfying the conditions (A1) and (A2) as established. 

Numerical scheme via AB FFO

The system (2) can be approximated using AB FFO. By applying integral approxima-
tion the right-hand side, we obtain:
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Next, we employ Lagrangian polynomial interpolation obtain the outcomes:
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Figure 1: Numerical  
simulation for system (2)  
at κ1 = 1, ϱ* = 1
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Figure 2: Numerical 
simulation for system (2) 
at κ1 = 0.98, ϱ* = 0.98
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Numerical simulation and discussions

For ϑ ∈ (0.8,1], the numerical simulations of the fractal-fractional CS are presented in 
figs. 1 and 2. The chaotic dynamics of the non-linear modified CS AB FFO were implemented. 
The numerical simulations were performed under various parameter settings of κ1 and * illus-
trated in figs. 1 and 2, demonstrating the influence of fractal-fractional orders on the chaotic 
system's behavior.

Discussion

This paper explores the application of AB FFOs in analyzing chaotic behaviors within 
non-linear modified CS. The paper is significant as it dives into fractal-fractional calculus, a 
modern extension of traditional fractional calculus, to model complex dynamic systems more 
accurately, particularly systems exhibiting chaotic or unpredictable behaviors. The document 
delves into the characteristics of chaotic systems – non-linear systems sensitive to initial condi-
tions, with dense periodic orbits, and topological mixing. This sensitivity is a defining feature 
of chaotic systems, where even slight changes in initial conditions can result in vastly different 
outcomes. The paper ties this understanding to the CS, a well-known chaotic model similar 
to the Lorenz system used in meteorology. One of the central tools in this research is the AB 
FFO, which integrates aspects of both fractal geometry and fractional calculus. These operators 
provide a more nuanced approach to modelling the behaviors of complex systems like the CS, 
capturing long-memory effects, heavy-tailed distributions, and other real-world phenomena 
that classical models might miss. This method is particularly useful in modelling systems with 
natural fractal-like behaviors. The paper presents a modification of the traditional CS equations 
using fractal-fractional calculus. The modified equations include parameters that account for 
the fractal-fractional characteristics of the system. This allows for a more accurate analysis 
of the system’s behavior, particularly in capturing chaotic phenomena. The paper uses fixed-
point theory to establish the existence and uniqueness of solutions for the modified CS. This 
mathematical proof ensures that the chaotic behaviors observed in the system are not merely 
numerical artifacts but are inherent to the system’s dynamics. The research includes numerical 
simulations that validate the theoretical findings. These simulations help demonstrate the re-
al-world applicability of the fractal-fractional operators in analyzing chaotic systems, providing 
deeper insights into the chaotic behavior of the modified CS. The simulations also help verify 
the model’s effectiveness in various scenarios. The paper suggests that the application of frac-
tal-fractional calculus has potential applications in biological systems, particularly those that 
exhibit chaotic behavior, such as certain types of oscillatory and relaxation processes in nature. 
Overall, this paper contributes to the broader field of chaos theory and non-linear dynamics by 
introducing a more sophisticated mathematical tool for analyzing complex systems, potentially 
improving the accuracy of models used in various scientific disciplines, from physics to biolo-
gy. The use of AB operators marks a significant step forward in fractional calculus, providing a 
pathway to explore chaotic phenomena with greater depth and precision.

Conclusion

This paper presents a dynamical analysis of a non-linear fractal fractional CS us-
ing the AB FFO. This study on the application of AB FFO to the non-linear CS showcases a 
significant advancement in the modelling and analysis of chaotic systems. By incorporating 
fractal-fractional calculus, this research provides a more precise framework for understand-
ing chaotic behaviors, which are highly sensitive to initial conditions and pervasive in natural 
and physical systems. The modified CS, when analyzed through these advanced operators, 



Almutairi, N.: An Application of Fractal Fractional Operators to Non-Linear ... 
THERMAL SCIENCE: Year 2024, Vol. 28, No. 6B, pp. 5169-5178	 5177

not only ensures the existence and uniqueness of solutions but also enhances the accuracy of 
simulations in capturing complex dynamics. The use of fixed-point theory and numerical sim-
ulations further validates the robustness of the proposed model, offering deeper insights into 
chaotic phenomena and opening the door to applications in various fields, including biology 
and physics. The integration of fractal geometry within fractional calculus, as demonstrated by 
the AB operators, underscores the potential of this approach for improving the understanding 
and representation of systems with fractal and chaotic behaviors. Overall, this research enriches 
the literature on chaos theory by introducing a novel method that can be applied to a wide range 
of non-linear systems, highlighting the effectiveness of fractal-fractional operators in capturing 
the intricate dynamics of complex systems.
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