THERMAL SCIENCE
International Scientific Journal
QUANTUM ENTANGLEMENT OF N-LEVEL ATOMS UNDER THE INFLUENCE OF THERMAL ENVIRONMENTAL
ABSTRACT
This study investigates the quantum features of entanglement in N-level atomic systems subjected to varying Stark effect (SE) and intrinsic decoherence (ID) parameters. The quantum entanglement (QE) diminishes with increasing SE parameter, while the Quantum Fisher information (QFI) exhibits complex dynamics with no consistent trend across N-levels. Notably, distinct phase factor values influence the QFI differently, with certain phase factors yielding higher QFI values. The ID proves influential, causing a decline in both QFI and von Neumann entropy (VNE) magnitudes. The QFI experiences oscillations, dampening with heightened decoherence, and decays more rapidly than VNE. Additionally, the VNE displays differential behaviors among N-level systems, with the 3-level system maintaining a sustained steady-state compared to the 4- and 5-level systems. The QFI and VNE exhibit periodic behavior across a range of Stark parameter values and phase factors. These findings contribute to a nuanced understanding of entanglement dynamics in multi-level atomic systems under various influencing factors.
KEYWORDS
PAPER SUBMITTED: 2024-06-20
PAPER REVISED: 2024-10-03
PAPER ACCEPTED: 2024-10-29
PUBLISHED ONLINE: 2025-01-25
THERMAL SCIENCE YEAR
2024, VOLUME
28, ISSUE
Issue 6, PAGES [4955 - 4967]
- Nielsen, M. A., Chuang, I.. L., Quantum Computation and Information, Cambridge University Press, Cambridge, UK, 2000
- Alber, G., et al., Quantum Information, Springer, Berlin, Germany, 2001 Chapter 5
- Joo, J., et al., Quantum Metrology with Entangled Coherent States, Phys. Rev. Lett., 107 (2011), 083601
- Berrada, K., et al., Quantum Metrology With Entangled Spin-Coherent States of Two Modes, Phys. Rev. A, 86 (2012), 33823
- Berrada, K., Quantum Metrology with SU (1, 1) Coherent States in the Presence of Non-Linear Phase Shifts. Phys. Rev. A, 88 (2013), 013817
- Goold, J., et al., The Role of Quantum Information in Thermodynamics-A Topical Review, J. Phys. A Math. Theor., 49 (2016), 143001
- Kibe, T., et al., Quantum Thermodynamics of Holographic Quenches and Bounds on the Growth of Entanglement from the Quantum Null Energy Condition, Phys. Rev. Lett., 128 (2022), 191602
- Liu, C., et al., Towards Entanglement Distillation between Atomic Ensembles Using High-Fidelity Spin Operations, Commun. Phys., 5 (2022), 67
- Castelano, L. K., et al., Open Quantum System Description of Singlet-Triplet Qubits in Quantum Dots, Phys. Rev. B, 94 (2016), 235433
- Pfaff, W., et al., Demonstration of Entanglement-by-Measurement of Solid-State Qubits, Nat. Phys., 9 (2013), 29
- Aldaghfag, S. A., et al., Entanglement and Photon Statistics of two Dipole-Dipole Coupled Superconducting Qubits with Kerr-like Non-Linearitie, Results Phys., 16 (2020), 102978
- Abdel-Khalek, S., et al., Quantum Correlations and Non-Classical Properties for Two Superconducting Qubits Interacting with a Quantized Field in the Context of Deformed Heisenberg Algebra, Chaos Solitons Fractals, 143 (2021), 110466
- Horodecki, R., Quantum Entanglement, Rev. Mod. Phys., 81 (2009), 865
- Eberly, J. H., Yu, T., The End of an Entanglement, AAA of Science, 2007, Vol. 316, No. 5824, pp. 555-557
- Yu, T., and Eberly, J. H., Finite-Time Disentanglement Via Spontaneous Emission, Phys. Rev. Lett., 97 (2006), 140403
- Fisher, R. A., Theory of Statistical Estimation, Math. Proc. Camb. Philos. Soc., 22 (1925), 700
- Huelga, S. F., Improvement of Frequency Standards with Quantum Entanglement, Phys. Rev. Lett., 79 (1997), 3865
- Jozsa, R., et al., Quantum Clock Synchronization Based on Shared Prior Entanglement, Phys. Rev. Lett., 85 (2000), 2010
- Peters, A., et al., Measurement of Gravitational Acceleration by Dropping Atoms, Nature, 400 (1999), 849
- Helstrom, C. W., Quantum Detection and Estimation Theory, Academic Press, Inc., New York, N. Y, USA, 1976
- Braunstein, S. L., Caves, C. M., Statistical Distance and the Geometry of Quantum States, Phys. Rev. Lett., 72 (1994), 3439
- Braunstein, S. L., et al., Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance, Ann. Phys., 247 (1996), 135
- Boixo, S., Monras, A., Operational Interpretation for Global Multipartite Entanglement, Phys. Rev. Lett., 100 (2008), 100503
- Pezze, L., Smerzi, A., Entanglement, Non-Linear Dynamics, And The Heisenberg Limit, Phys. Rev. Lett., 102 (2009), 100401
- Berrada, K., Non-Markovian Effect on the Precision of Parameter Estimation, Phys. Rev. A, 88 (2013), 035806
- Ji, Z., et al., Parameter Estimation Of Quantum Channels, IEEE Trans. Inf. Theory, 54 (2008), 5172
- Fujiwara, A. Quantum Channel Identification Problem, Phys. Rev. A, 63 (2001), 042304
- Monras, A., Paris, M. G. A., Optimal Quantum Estimation of Loss In Bosonic Channels, Phys. Rev. Lett., 98 (2007), 160401
- Invernizzi, C., Optimal Quantum Estimation in Spin Systems at Criticality, Phys. Rev. A., 78 (2008), 042106
- Ma, J., Wang, X., Fisher Information and Spin Squeezing in the Lipkin-Meshkov-Glick Model, Phys. Rev. A, 80 (2009), 012318
- Alliluev, S. P., Malkin, I. A., Calculations of the Stark Effect in Hydrogen Atoms by Using the Dynamical Symmetry O(2, 2) O(2), Zh. Eksp. Teor. Fiz., 66 (1974), 1283
- Al Naim, A. F., et al., Effects of Kerr Medium and Stark Shift Parameter on Wehrl Entropy and the Field Purity for Two-Photon Jaynes-Cumminges Model under Dispersive Approximation, J. Russ. Laser. Res., 40 (2019), 20
- Hilal, E. M. A., Khalil, E. M., Quantum Statistical Aspects of Interactions between the Radiation Field and Two Entangled Two-Level Atoms in the Presence of Stark Shift Terms, J. Russ. Laser. Res., 39 (2018), 207
- Ibrahim, M., et al., Dynamics of N Two-Level Moving Atoms under the Influence of the Non-Linear Kerr Medium, Optical and Quantum Electronics, 55 (2023), 1009
- Anwar, S. J., et al., Effect of Stark-and Kerr-Like Medium on the Entanglement Dynamics of Two Three-Level Atomic System, Quantum Inf. Process., 18 (2019), 192
- Anwar, S. J., et al., Stark and Kerr Effects on the Dynamics of Moving N-Level Atomic System, J. Quantum Inf., 9 (2019), 22
- Milburn, G. J., Intrinsic Decoherence In Quantum Mechanics, Phys. Rev. A, 44 (1991), Nov., pp. 5401-5406
- Shor, P. W., Scheme for Reducing Decoherence in Quantum Computer Memory, Physical Review A, 48 (1995), 2493
- Isaac L., Chuang, Yamamoto, Y., Creation of a Persistent Quantum Bit Using Error Correction, Phys. Rev. A, 55 (1997), 114
- Moya-Cessa, H., et al., Intrinsic Decoherence in the Atom-Field Interaction, Phys. Rev. A, 48 (1993), 3900
- Plenio, M. B., Knight P. L, Decoherence Limits to Quantum Computation Using Trapped Ions, Proc. R. Soc. Lond. A., 453 (1997), Oct., pp. 2017-2041
- Zurek, W. H., Pointer Basis of Quantum Apparatus: Into what Mixture Does the Wave Packet Collapse, Phys. Rev. D, 24 (1981), Sept., pp. 1516-1525
- W. H. Zurek, Environment-Induced Superselection Rules, Phys. Rev. D, 26 (1982), Oct., pp. 1862-1880
- Leggett, A. J., et al., Dynamics of the Dissipative Two-State System, Rev. Mod. Phys., 59 (1987), Jan., pp. 1-85
- Zheng, L., Zhang, G.-F., Intrinsic Decoherence In Jaynes-Cummings Model with Heisenberg Exchange Interaction, The European Physical Journal D, 71 (2017), 288
- Abdel-Khalek, S., Quantum Fisher Information for Moving Three-Level Atom, Quantum Inf. Process, 12 (2013), 3761
- Enaki, N. A., Ciobanu, N. J., Quantum Trapping Conditions for Three-Level Atom Flying through Bimodal Cavity Field, Mod. Opt., 55 (2008), 10, pp. 589-598
- Guo J. L., Song H. S., Entanglement between Two Tavis-Cummings Atoms With Phase Decoherence, Journal of Modern Optics, 56 (2009), 4, pp. 496-501
- Lu, X., et al., Quantum Fisher Information Flow and Non-Markovian Processes of Open Systems, Phys. Rev. A, 82 (2010), 042103
- Almalki, S., et al., Dynamics of Quantum Correlations And Fisher Information Of A Multipartite System under the Stark Effect, Alexandria Engineering Journal, 104 (2024), Oct., pp. 378-385
- Barndorff-Nielsen, et al., On Quantum Statistical Inference, J. R. Stat. Soc. B, 65 (2003), 4, pp. 775-816