THERMAL SCIENCE

International Scientific Journal

QUANTUM ENTANGLEMENT OF N-LEVEL ATOMS UNDER THE INFLUENCE OF THERMAL ENVIRONMENTAL

ABSTRACT
This study investigates the quantum features of entanglement in N-level atomic systems subjected to varying Stark effect (SE) and intrinsic decoherence (ID) parameters. The quantum entanglement (QE) diminishes with increasing SE parameter, while the Quantum Fisher information (QFI) exhibits complex dynamics with no consistent trend across N-levels. Notably, distinct phase factor values influence the QFI differently, with certain phase factors yielding higher QFI values. The ID proves influential, causing a decline in both QFI and von Neumann entropy (VNE) magnitudes. The QFI experiences oscillations, dampening with heightened decoherence, and decays more rapidly than VNE. Additionally, the VNE displays differential behaviors among N-level systems, with the 3-level system maintaining a sustained steady-state compared to the 4- and 5-level systems. The QFI and VNE exhibit periodic behavior across a range of Stark parameter values and phase factors. These findings contribute to a nuanced understanding of entanglement dynamics in multi-level atomic systems under various influencing factors.
KEYWORDS
PAPER SUBMITTED: 2024-06-20
PAPER REVISED: 2024-10-03
PAPER ACCEPTED: 2024-10-29
PUBLISHED ONLINE: 2025-01-25
DOI REFERENCE: https://doi.org/10.2298/TSCI2406955A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2024, VOLUME 28, ISSUE Issue 6, PAGES [4955 - 4967]
REFERENCES
  1. Nielsen, M. A., Chuang, I.. L., Quantum Computation and Information, Cambridge University Press, Cambridge, UK, 2000
  2. Alber, G., et al., Quantum Information, Springer, Berlin, Germany, 2001 Chapter 5
  3. Joo, J., et al., Quantum Metrology with Entangled Coherent States, Phys. Rev. Lett., 107 (2011), 083601
  4. Berrada, K., et al., Quantum Metrology With Entangled Spin-Coherent States of Two Modes, Phys. Rev. A, 86 (2012), 33823
  5. Berrada, K., Quantum Metrology with SU (1, 1) Coherent States in the Presence of Non-Linear Phase Shifts. Phys. Rev. A, 88 (2013), 013817
  6. Goold, J., et al., The Role of Quantum Information in Thermodynamics-A Topical Review, J. Phys. A Math. Theor., 49 (2016), 143001
  7. Kibe, T., et al., Quantum Thermodynamics of Holographic Quenches and Bounds on the Growth of Entanglement from the Quantum Null Energy Condition, Phys. Rev. Lett., 128 (2022), 191602
  8. Liu, C., et al., Towards Entanglement Distillation between Atomic Ensembles Using High-Fidelity Spin Operations, Commun. Phys., 5 (2022), 67
  9. Castelano, L. K., et al., Open Quantum System Description of Singlet-Triplet Qubits in Quantum Dots, Phys. Rev. B, 94 (2016), 235433
  10. Pfaff, W., et al., Demonstration of Entanglement-by-Measurement of Solid-State Qubits, Nat. Phys., 9 (2013), 29
  11. Aldaghfag, S. A., et al., Entanglement and Photon Statistics of two Dipole-Dipole Coupled Superconducting Qubits with Kerr-like Non-Linearitie, Results Phys., 16 (2020), 102978
  12. Abdel-Khalek, S., et al., Quantum Correlations and Non-Classical Properties for Two Superconducting Qubits Interacting with a Quantized Field in the Context of Deformed Heisenberg Algebra, Chaos Solitons Fractals, 143 (2021), 110466
  13. Horodecki, R., Quantum Entanglement, Rev. Mod. Phys., 81 (2009), 865
  14. Eberly, J. H., Yu, T., The End of an Entanglement, AAA of Science, 2007, Vol. 316, No. 5824, pp. 555-557
  15. Yu, T., and Eberly, J. H., Finite-Time Disentanglement Via Spontaneous Emission, Phys. Rev. Lett., 97 (2006), 140403
  16. Fisher, R. A., Theory of Statistical Estimation, Math. Proc. Camb. Philos. Soc., 22 (1925), 700
  17. Huelga, S. F., Improvement of Frequency Standards with Quantum Entanglement, Phys. Rev. Lett., 79 (1997), 3865
  18. Jozsa, R., et al., Quantum Clock Synchronization Based on Shared Prior Entanglement, Phys. Rev. Lett., 85 (2000), 2010
  19. Peters, A., et al., Measurement of Gravitational Acceleration by Dropping Atoms, Nature, 400 (1999), 849
  20. Helstrom, C. W., Quantum Detection and Estimation Theory, Academic Press, Inc., New York, N. Y, USA, 1976
  21. Braunstein, S. L., Caves, C. M., Statistical Distance and the Geometry of Quantum States, Phys. Rev. Lett., 72 (1994), 3439
  22. Braunstein, S. L., et al., Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance, Ann. Phys., 247 (1996), 135
  23. Boixo, S., Monras, A., Operational Interpretation for Global Multipartite Entanglement, Phys. Rev. Lett., 100 (2008), 100503
  24. Pezze, L., Smerzi, A., Entanglement, Non-Linear Dynamics, And The Heisenberg Limit, Phys. Rev. Lett., 102 (2009), 100401
  25. Berrada, K., Non-Markovian Effect on the Precision of Parameter Estimation, Phys. Rev. A, 88 (2013), 035806
  26. Ji, Z., et al., Parameter Estimation Of Quantum Channels, IEEE Trans. Inf. Theory, 54 (2008), 5172
  27. Fujiwara, A. Quantum Channel Identification Problem, Phys. Rev. A, 63 (2001), 042304
  28. Monras, A., Paris, M. G. A., Optimal Quantum Estimation of Loss In Bosonic Channels, Phys. Rev. Lett., 98 (2007), 160401
  29. Invernizzi, C., Optimal Quantum Estimation in Spin Systems at Criticality, Phys. Rev. A., 78 (2008), 042106
  30. Ma, J., Wang, X., Fisher Information and Spin Squeezing in the Lipkin-Meshkov-Glick Model, Phys. Rev. A, 80 (2009), 012318
  31. Alliluev, S. P., Malkin, I. A., Calculations of the Stark Effect in Hydrogen Atoms by Using the Dynamical Symmetry O(2, 2) O(2), Zh. Eksp. Teor. Fiz., 66 (1974), 1283
  32. Al Naim, A. F., et al., Effects of Kerr Medium and Stark Shift Parameter on Wehrl Entropy and the Field Purity for Two-Photon Jaynes-Cumminges Model under Dispersive Approximation, J. Russ. Laser. Res., 40 (2019), 20
  33. Hilal, E. M. A., Khalil, E. M., Quantum Statistical Aspects of Interactions between the Radiation Field and Two Entangled Two-Level Atoms in the Presence of Stark Shift Terms, J. Russ. Laser. Res., 39 (2018), 207
  34. Ibrahim, M., et al., Dynamics of N Two-Level Moving Atoms under the Influence of the Non-Linear Kerr Medium, Optical and Quantum Electronics, 55 (2023), 1009
  35. Anwar, S. J., et al., Effect of Stark-and Kerr-Like Medium on the Entanglement Dynamics of Two Three-Level Atomic System, Quantum Inf. Process., 18 (2019), 192
  36. Anwar, S. J., et al., Stark and Kerr Effects on the Dynamics of Moving N-Level Atomic System, J. Quantum Inf., 9 (2019), 22
  37. Milburn, G. J., Intrinsic Decoherence In Quantum Mechanics, Phys. Rev. A, 44 (1991), Nov., pp. 5401-5406
  38. Shor, P. W., Scheme for Reducing Decoherence in Quantum Computer Memory, Physical Review A, 48 (1995), 2493
  39. Isaac L., Chuang, Yamamoto, Y., Creation of a Persistent Quantum Bit Using Error Correction, Phys. Rev. A, 55 (1997), 114
  40. Moya-Cessa, H., et al., Intrinsic Decoherence in the Atom-Field Interaction, Phys. Rev. A, 48 (1993), 3900
  41. Plenio, M. B., Knight P. L, Decoherence Limits to Quantum Computation Using Trapped Ions, Proc. R. Soc. Lond. A., 453 (1997), Oct., pp. 2017-2041
  42. Zurek, W. H., Pointer Basis of Quantum Apparatus: Into what Mixture Does the Wave Packet Collapse, Phys. Rev. D, 24 (1981), Sept., pp. 1516-1525
  43. W. H. Zurek, Environment-Induced Superselection Rules, Phys. Rev. D, 26 (1982), Oct., pp. 1862-1880
  44. Leggett, A. J., et al., Dynamics of the Dissipative Two-State System, Rev. Mod. Phys., 59 (1987), Jan., pp. 1-85
  45. Zheng, L., Zhang, G.-F., Intrinsic Decoherence In Jaynes-Cummings Model with Heisenberg Exchange Interaction, The European Physical Journal D, 71 (2017), 288
  46. Abdel-Khalek, S., Quantum Fisher Information for Moving Three-Level Atom, Quantum Inf. Process, 12 (2013), 3761
  47. Enaki, N. A., Ciobanu, N. J., Quantum Trapping Conditions for Three-Level Atom Flying through Bimodal Cavity Field, Mod. Opt., 55 (2008), 10, pp. 589-598
  48. Guo J. L., Song H. S., Entanglement between Two Tavis-Cummings Atoms With Phase Decoherence, Journal of Modern Optics, 56 (2009), 4, pp. 496-501
  49. Lu, X., et al., Quantum Fisher Information Flow and Non-Markovian Processes of Open Systems, Phys. Rev. A, 82 (2010), 042103
  50. Almalki, S., et al., Dynamics of Quantum Correlations And Fisher Information Of A Multipartite System under the Stark Effect, Alexandria Engineering Journal, 104 (2024), Oct., pp. 378-385
  51. Barndorff-Nielsen, et al., On Quantum Statistical Inference, J. R. Stat. Soc. B, 65 (2003), 4, pp. 775-816

2025 Society of Thermal Engineers of Serbia. Published by the VinĨa Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence