THERMAL SCIENCE

International Scientific Journal

ANALYSIS OF INTERNAL TIDE CHARACTERISTICS IN THE NORTHWEST PACIFIC OCEAN

ABSTRACT
The available potential energy of the diurnal internal tide in the Northwest Pacific ocean is studied by using short-term high-frequency mooring observations. The results show that in the upper layer of the ocean, its distribution is relatively chaotic, and it is greater between 1500-1600 m and 2500-3000 m in the middle layer of the ocean. At other depths, it is generally smaller, especially, at the bottom layer of the ocean, it is relatively small. This paper concludes that the marvel of measurement is the best science picks.
KEYWORDS
PAPER SUBMITTED: 2022-12-25
PAPER REVISED: 2023-08-06
PAPER ACCEPTED: 2023-08-07
PUBLISHED ONLINE: 2024-05-18
DOI REFERENCE: https://doi.org/10.2298/TSCI2403335X
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2024, VOLUME 28, ISSUE Issue 3, PAGES [2335 - 2340]
REFERENCES
  1. Garrett, C., et al., Internal tide Generation in the Deep Ocean, Annu. Rev. Fluid Mech., 39 (2007), Jan., pp. 57-87
  2. Egbert, G. D., et al., Estimates of M2 Tidal Energy Dissipation from TOPEX/Poseidon Altimeter Data, J. Geophys. Res.: Oceans, 106 (2001), C10, pp. 22475-22502
  3. Munk, W., et al., Abyssal Recipes II: Energetics of Tidal and Wind Mixing, Deep Sea Res., Part I, 45 (1998), 12, pp. 1977-2010
  4. St. Laurent, L., et al., The Role of Internal Tides in Mixing the Deep Ocean, J. Phys. Oceanogr., 32 (2002), 10, pp. 2882-2899
  5. Wunsch, C., et al., Vertical Mixing, Energy, and the General Circulation of the Oceans, Annu. Rev. Fluid Mech., 36 (2004), Jan., pp. 281-314
  6. Holloway, P. E., Internal Hydraulic Jumps and Solitons at a Shelf Break Region on the Australian North West Shelf, J. Geophys. Res.: Oceans, 92 (1987), C5, pp. 5405-5416
  7. Klymak, J. M., et al., Oceanic Isopycnal Slope Spectra, Part II: Turbulence, J. Phys. Oceanogr., 37 (2007), 5, pp. 1232-1245
  8. Farmer, D. M., et al., From Luzon Strait to Dongsha Plateau: Stages in the Life of an Internal Wave, Oceanography, 24 (2011), 4, pp. 64-77
  9. Klymak, J. M., et al., A Simple Parameterization of Turbulent Tidal Mixing Near Supercritical Topography, J. Phys. Oceanogr., 40 (2010), 9, pp. 2059-2074
  10. Sandstrom, H., et al., Observing Groups of Solitary Internal Waves and Turbulence with BATFISH and Echo-Sounder, J. Phys. Oceanogr., 19 (1989), 7, pp. 987-997
  11. Sharples, J., et al., Internal Tidal Mixing as a Control on Continental Margin Ecosystems, Geophys. Res. Lett., 36 (2009), 23
  12. Cacchione, D., et al., Incipient Sediment Movement by Shoaling Internal Gravity Waves, J. Geophys. Res., 79 (1974), 15, pp. 2237-2242
  13. Johnson, D. R., et al., Internal Tidal Bores and Bottom Nepheloid Layers, Cont. Shelf Res., 21 (2001), 13-14, pp. 1473-1484
  14. Powell, B. S., et al., Using a Numerical Model to Understand the Connection Between the Ocean and Acoustic Travel-Time Measurements, The Journal of the Acoustical Society of America, 134 (2013), 4, pp. 3211-3222
  15. Laurent, L. C. S., et al., An Examination of the Radiative and Dissipative Properties of Deep Ocean Internal Tides, Deep Sea Research Part II: Topical Studies in Oceanography, 51 (2004), 25-26, pp. 3029-3042
  16. Zhao, Z., et al., Global Observations of Open-Ocean Mode-1 M 2 Internal Tides, J. Phys. Oceanogr., 46 (2016), 6, pp. 1657-1684
  17. Klymak, J. M., et al., The Breaking and Scattering of the Internal Tide on a Continental Slope, J. Phys. Oceanogr., 41 (2011), 5, pp. 926-945
  18. Zhao, Z., et al., Long-Range Propagation of the Semidiurnal Internal Tide from the Hawaiian Ridge, J. Phys. Oceanogr., 40 (2010), 4, pp. 713-736
  19. Du, Y., et al., Tropical Indian Ocean Influence on Northwest Pacific Tropical Cyclones in Summer Following Strong El Nino, J. Clim., 24 (2011), 1, pp. 315-322
  20. Liu, Z., et al., Open Boundary Conditions for Tidally and Subtidally Forced Circulation in a Limited-Area Coastal Model Using the Regional Ocean Modeling System (ROMS), J. Geophys. Res.: Oceans, 121 (2016), 8, pp. 6184-6203
  21. Hu, D., et al., Pacific Western Boundary Currents and Their Roles in Climate, Nature, 522 (2015), 7556, pp. 299-308
  22. Chen, C., et al., Role of North Pacific Mixed Layer in the Response of SST Annual Cycle to Global Warming, J. Clim., 28 (2015), 23, pp. 9451-9458
  23. Xue, H., et al., Kuroshio Intrusion and the Circulation in the South China Sea, J. Geophys. Res.: Oceans, 109 (2004), C2
  24. Luo, Y., et al., Simulated Response of North Pacific Mode Waters to global warming, Geophys. Res. Lett., 36 (2009), 23
  25. Liu, Z., et al., Weak Thermocline Mixing in the North Pacific Low-Latitude Western Boundary Current System, Geophys. Res. Lett., 44 (2017), 20, pp. 10,530-510,539
  26. Desaubies, Y., et al., Reversible and Irreversible Finestructure, Journal of Physical Oceanography, 11 (1981), 4, pp. 541-556
  27. Alford, M. H., et al., Global Patterns of Low-Mode Internal-Wave Propagation. Part I: Energy and energy flux, Journal of Physical Oceanography, 37 (2007), 7, pp. 1829-1848
  28. Huang, X., et al., Role of Mesoscale Eddies in Modulating the Semidiurnal Internal Tide: Observation Results in the Northern South China Sea, Journal of Physical Oceanography, 48 (2018), 8, pp. 1749-1770
  29. Pickering, A., et al., Structure and Variability of Internal Tides in Luzon Strait, Journal of Physical Oceanography, 45 (2015), 6, pp. 1574-1594
  30. Waterhouse, A. F., et al., Internal Tide Convergence and Mixing in a Submarine Canyon, Journal of Physical Oceanography, 47 (2017), 2, pp. 303-322
  31. Zhao, Z., et al., Internal Tides and Mixing in a Submarine Canyon with Time-Varying Stratification, Journal of Physical Oceanography, 42 (2012), 12, pp. 2121-2142

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence