THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

TEMPORAL INSTABILITY OF NON-NEWTONIAN LIQUID JETS DURING CENTRIFUGAL ELECTROSPINNING

ABSTRACT
This investigation is aimed at analysing linear instability of an initial stable jet through the air-sealed electro-centrifugal spinning process which is significant in creating nanofibers. Utilising the perturbation theory to diminish the governing equations, into a 1-D mode with the option of solving acquired non-linear differential equations. Hence, the trajectory of a power-law fluid jet during electro-centrifugal spinning power has been determined. Dispersion relation has been gotten from the linear theory to study the conduct of a power-law fluid curved jet with an electric field.
KEYWORDS
PAPER SUBMITTED: 2022-08-15
PAPER REVISED: 2022-10-20
PAPER ACCEPTED: 2022-10-30
PUBLISHED ONLINE: 2023-01-21
DOI REFERENCE: https://doi.org/10.2298/TSCI22S1157A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Special issue 1, PAGES [157 - 169]
REFERENCES
  1. Savart, F., a Mémoire sur la constitution des veines liquides lancees par des orifices circulaires en mince paroi, Ann. de Chim., 53 (1833), pp. 337-386
  2. Plateau, J., Statique Experimentale et theortique des liquides soumis aux seules forces moleculaires, Gauthier Villars, Paris, France, II, 319, 1873
  3. Rayleigh, W. S., On the Instability of Jets, Proc. Lond. Math. Soc., 10 (1878), 4
  4. Middleman, S., Stability of a Viscoelastic Jet, Chem. Eng. Sci., 20 (1965), 12, pp. 1037-1040
  5. Renardy, M., A Numerical Study of the Asymptotic Evolution and Breakup of Newtonian and Viscoelastic Jets, Journal Non-Newtonian Fluid Mech., 59 (1995), 2-3, pp. 267-282
  6. Goldin, M., et al., Breakup of a Viscoelastic Fluid, Journal Fluid Mech., 38 (1969), pp. 689-711
  7. Brenn, G., et al., Linear Analysis of the Temporal Instability of Axisymmetrical Non-Newtonian Liquid jets, International Journal of Multi-phase Flow, 26 (2000), 10, pp. 1621-1644
  8. Larson, R. G., Constitutive Equation for Polymer Melts and Solutions, in: Butterworths Series in Chemical Eng., Elsavier, Amsterdam, The Netherlands, 1988
  9. Schummer, P., Thelen, H. G., Break-up of a Viscoelastic Liquid Jets, Rheol. Acta, 27 (1988), Jan., pp. 39-43
  10. Larson, R. G., Instabilities in Viscoelastic Flows, Rheol. Acta, 31 (1992), May, pp. 213-263
  11. Fontelos, M. A., Break-up and no Break-up in a Family for the Evolution of Viscoelastic Jets, Z. Angew. Math. Phys., 54 (2003), Jan., pp. 84-111
  12. Davidson, M. R., et al., Simulation of Pendant Drop Formation of a Viscoelastic Liquid, Korea-Australia Rheology Journal, 18 (2006), 2, pp. 41-49
  13. Fontelos, M. A., Li, J., On the Evolution and Rupture of Filaments in Giesekus and FENE Models, Journal Non-Newtonian Fluid Mech., 118 (2004), 1, pp. 1-16
  14. Liu, Z., Liu, Z., Instability of a viscoelastic liquid jet with axisymmetric and asymmetric disturbance, International Journal of Multi-phase Flow, 34 (2008), 1, pp. 42-60
  15. Ardekani, A. M., et al., Dynamics of Bead Formation, Filament Thinning and Breakup in Weakly Viscoelastic Jets, Journal Fluid Mech., 665 (2010), Dec., pp. 46-56
  16. Cheong, B. S., Howes, T., Capillary Jet Instability under Influence of Gravity, Chemmical Engineering Science, 59 (2004), 11, pp. 2145-2157
  17. Morrison, N. F., Harlen, O. G., Viscoelasticity in inkjet printing, Rheol. Acta, 49 (2010), Jan., pp. 619-632
  18. Sauter, U., S., Buggisch, H., W., Stability of Initially Slow Viscous Jets Driven by Gravity, Journal Fluid Mech., 533 (2005), June, pp. 237-257
  19. Divvela, M. J., et al., Discretized Modelling for Centrifugal Spinning of Viscoelastic Liquids, Journal of Non-Newtonian Fluid Mechanics, 247 (2017), Sept., pp. 62-77
  20. Alsharif, A. M., Instability of non-Newtonian Liquid Jets in Centrifugal Spinning with Surfactants, Fluid Dynamics Research, 51 (2019), 3, 035510
  21. Taghavi, S. M., Larson, R. G., Regularized Fhin-Fiber Model for Nanofiber Formation by Centrifugal Spinning, Physical Review E, 89 (2014), 2, 023011
  22. Alsharif, A. M., et al., Instability of Viscoelastic Curved Jets, Appl. Math. Modell., 39 (2015), 14, pp. 3924-3938
  23. Riahi, D. N., Modelling and computation of non-linear rotating polymeric jets during force spinning process, International Journal of Non-linear Mechanics, 92 (2017), June, pp. 1-7
  24. Noroozi, S., et al., Regularized String Model for Nanofibre Formation in Centrifugal Spinning Methods, Journal, Fluid. Mech., 822 (2017), July, pp. 202-234
  25. Rogalski, J. J., et al., Rotary Jet Spinning Review a Potential High Yield Future for Polymer Nanofibers, Nanocomposites, 3 (2017), 4, pp. 97-121
  26. Hohman, M. M., et al., Electrospinning and Electrically Forced Jets, I. Stability Theory: Phys. Fluids, 13 (2001), 8, 2201
  27. Hohman, M. M, et al., Electrospinning and Electrically Forced Jets: II. Applications Phys. Fluids, 13 (2001), 8, 2221
  28. Alsharif, A. M., Parau, E. I., Temporal Instability of Curved Viscous Fibers with a Radial Electric Field, IMA Journal of Applied Mathematics, 87 (2022), 3, pp. 380-406
  29. Feng, J. J., Stretching of a Straight Electrically Charged Viscoelastic Jet, J. Non-Newtonian Fluid Mech., 116 (2003), 1, pp. 55-70
  30. Reneker, D. H., et al., Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning, Journal Appl. Phys., 87 (2000), 9, pp. 4531-4547
  31. Yarin, A. L., et al., 2001, Bending Instability in Electrospinning of Nanofibers, Journal Appl. Phys., 89 (2001), 5, pp. 3018-3026
  32. Carroll, C. P., Joo, Y. L., Axisymmetric Instabilities of Electrically Driven Viscoelastic Jets, Journal Non-Newtonian Fluid Mech., 153 (2006,), 2-3, pp. 130-148
  33. Chang, W. M., et al., The Combination of Electrospin-Ning and Forcespinning: Effects on a Viscoelastic Jet and a Single Nanofiber, Chemical Engineering Journal, 244 (2014), May, pp. 540-551
  34. Liao, C. C., et al., Stretching-Induced Crystallinity and Orientation of Polylactic Acid Nanofibers with Improved Mechanical Properties Using an Electrically Charged Rotating Viscoelastic Jet, Polymer, 52 (2011), 19, pp. 4303-4318
  35. Riahi, D. A., On Non-Linear Rotating Electrified Non-Newtonian Jets, International Journal of Non-Linear Mechanics, 109 (2019), Mar., pp. 166-171
  36. Wallwork, I. M., The Trajectory and Stability of a Spiralling Liquid Jet, Ph. D. thesis, University of Birmingham, Birmingham, UK, 2022
  37. Decent, S. P., et al., Free Jets Spun from a Prilling Tower, Journal of Engineering Mathematics, 42 (2002), Apr., pp. 265-282
  38. Melcher, J. R., Taylor, G. I., Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses, Annual Review of Fluid Mechanics, 1 (1969), Jan., pp. 111-146
  39. Saville, D. A., Electrohydrodynamics: The Taylor-Melcher Leaky Dielectric Model, Annual Review of Fluid Mechanics, 29 (1997), Jan., pp. 27-64
  40. Eggers, J., Non-Linear Dynamics and Breakup of Free Surface Flows, Rev. Mod. Physis, 69 (1997), 3, pp. 865-929
  41. Decent, S. P., et al., The Trajectory and Stability of a Spiralling Liquid Jet - Part II: Viscous Theory, Appl. Math. Modelling, 33 (2007), 12, pp. 4283-4302
  42. Uddin, J., et al., The Instability of Shear Thinning and Shear Thickening Spiralling Liquid Jets: Linear Theory, ASME J. of Fluids Eng., 128 (2006), 5, pp. 968-975
  43. Parau, E. I., et al., Non-Linear Viscous Liquid Jets from a Rotating Orifice, Journal of Eng. Maths., 57 (2007), Dec., pp. 159-179
  44. Hashemi, A. R., et al., Numerical and Experimental Study on the Steady Cone-Jet Mode of Electro-Centrifugal Spinning, Phys. Fluids, 30 (2018), 017103
  45. Stone, H. A., et al., Drops with Conical ends in Electric and Magnetic Fields, Proc. R. Soc. Lond. A, 455 (1999), 1991, pp. 329-347
  46. Uddin, J., An Investigation into Methods to Control Breakup and Droplet Formation in Single and Compound Liquid Jets, Ph. D. thesis, University of Birmingham, Birmingham, UK, 2007

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence