THERMAL SCIENCE
International Scientific Journal
COEFFICIENTS BOUNDS FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS DEFINED BY AL-OBOUDI DIFFERENTIAL OPERATOR
ABSTRACT
In this paper, we investigate a new subclass Σnδ(λ,γ,φ)of analytic and bi-univalent functions in the open unit disk U ={z:|z|<1} defined by Al-Oboudi differential operator. We obtain coefficient bounds and for functions belonging to subclass Σnδ(λ,γ,φ). Relevant connections of the results presented here with various well-known results are briefly indicated.
KEYWORDS
PAPER SUBMITTED: 2022-08-16
PAPER REVISED: 2022-09-20
PAPER ACCEPTED: 2022-09-25
PUBLISHED ONLINE: 2023-01-29
- Al-Oboudi, F. M., On Univalent Functions Defined by a Generalized Salagean Operator, Int. J. Math. Math. Sci., 2004 (2004), 27, pp. 1429-1436
- Salagean, G. S., Subclasses of Univalent Functions, Complex Analysis, Proceedings, 5th Rom.-Finn. Semin., Bucharest 1981, Part 1, Lect. Notes Math., 1013 (1983), pp. 362-372
- Lewin, M., On a Coefficient Problem for Bi-Univalent Functions, Proc. Amer. Math. Soc., 18 (1967), 1, pp. 63-68
- Brannan, D. A., Clunie, J. G., Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1 20, 1979), Academic Press, New York and London, 1980
- Netanyahu, E., The Minimal Distance of the Image Boundary from the Origin and the Second Coefficient of a Univalent Function in |z| < 1, Arch. Rational Mech. Anal., 32 (1969), 2, pp. 100-112
- Rosihan, M. A., et al., Coefficient Estimates for Bi- Univalent Ma-Minda Starlike and Convex Functions, Appl. Math. Lett., 25 (2012), 3, pp. 344-351
- Brannan, D. A., Taha, T. S., On Some Classes of Bi-Univalent Functions, in: Mazhar, S. M., et al., Math. Anal. and Appl., Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60, see also Studia Univ. Babeş-Bolyai Math., 31 (1986), 2, pp. 70-77
- Bulut, S., Faber Polynomial Coefficient Estimates for a Comprehensive Subclass of Analytic Bi- Univalent Functions, C. R. Acad. Sci. Paris, Ser. I, 352 (2014), 6, pp. 479-484
- Bulut, S., et al., Faber Polynomial Coefficient Estimates for Certain Subclasses of Meromorphic Bi- Univalent Functions, Comptes Rendus Mathematique, 353 (2015), 2, pp. 113-116
- Caglar, M., Deniz, E., Initial Coefficients for a Subclass of Bi-Univalent Functions Defined by Salagean Differential Operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66 (2017), 1, pp. 85-91
- Caglar, M., Coefficient Bounds for New Subclasses of Bi-Univalent Functions, Filomat, 27 (2013), 7, pp. 1165-1171
- Deniz, E., Certain Subclasses of Bi-Univalent Functions Satisfying Subordinate Conditions, J. Class. Anal., 2 (2013), 1, pp. 49-60
- Frasin, B. A., Aouf, M. K., New Subclasses of Bi-Univalent Functions, Appl. Math. Lett., 24 (2011), 9, pp. 1569-1573
- Hamidi, S. G., Jahangiri J. M., Faber Polynomial Coefficient Estimates for analytic Bi-Close-to-Convex Functions, C. R. Acad. Sci. Paris, Ser. I, 352 (2014), 1, pp. 17-20
- Kedzierawski, A. W., Some Remarks on Bi-Univalent Functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 39 (1985), pp. 77-81
- Kumar, S., Estimates for the Initial Coefficients of Bi-Univalent Functions, Tamsui Oxford J. Inform. Math. Sci., 29 (2013), 4, pp. 487-504
- Mishra, A. K., Barık, S., Estimates for the Initial Coefficients of Bi-Univalent λ-convex Analytic Functions in the Unit Disc, Journal of Classical Analysis, 7 (2015), 1, pp. 73-81
- Orhan, H., et al., Initial Coefficient Bounds for a General Class of Bi-Univalent Functions, Filomat, 29 (2015), 6, pp. 1259-1267
- Ramachandran, C., et al., Initial Coefficient Estimates for Certain Subclasses of Bi-Univalent Functions of Ma-Minda Type, Applied Mathematical Sciences, 9 (2015), 47, pp. 2299-2308
- Srivastava, H. M., et al., Certain Subclasses of Analytic and Bi-Univalent Functions, Appl. Math. Lett., 23 (2010), 10, pp. 1188-1192
- Srivastava, H. M., et al., Coefficient Estimates for a General Subclass of Analytic and Bi-Univalent Functions, Filomat, 27 (2013), 5, pp. 831-842
- Srivastava, H. M., Bansal, D., Coefficient Estimates for a Subclass of Analytic and Bi-Univalent Functions, Journal of the Egyptian Mathematical Society, 23 (2015), 2, pp. 242-246
- Sun, Y., et al., Coefficient Estimates for Certain Subclasses of Analytic and Bi-Univalent Functions, Filomat 29 (2015), 2, pp. 351-360
- Tan, D. L., Coefficient Estimates for Bi-Univalent Functions, Chinese Ann. Math. Ser. A, 5 (1984), 5, pp. 559-568
- Zaprawa, P., Estimates of Initial Coefficients for Bi-Univalent Functions, Abstr. Appl. Anal., 2014 (2014), ID 357480
- Duren, P. L., Univalent Functions,Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, USA, 1983