THERMAL SCIENCE

International Scientific Journal

External Links

COEFFICIENTS BOUNDS FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS DEFINED BY AL-OBOUDI DIFFERENTIAL OPERATOR

ABSTRACT
In this paper, we investigate a new subclass Σnδ(λ,γ,φ)of analytic and bi-univalent functions in the open unit disk U ={z:|z|<1} defined by Al-Oboudi differential operator. We obtain coefficient bounds and for functions belonging to subclass Σnδ(λ,γ,φ). Relevant connections of the results presented here with various well-known results are briefly indicated.
KEYWORDS
PAPER SUBMITTED: 2022-08-16
PAPER REVISED: 2022-09-20
PAPER ACCEPTED: 2022-09-25
PUBLISHED ONLINE: 2023-01-29
DOI REFERENCE: https://doi.org/10.2298/TSCI22S2583U
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Special issue 2, PAGES [583 - 589]
REFERENCES
  1. Al-Oboudi, F. M., On Univalent Functions Defined by a Generalized Salagean Operator, Int. J. Math. Math. Sci., 2004 (2004), 27, pp. 1429-1436
  2. Salagean, G. S., Subclasses of Univalent Functions, Complex Analysis, Proceedings, 5th Rom.-Finn. Semin., Bucharest 1981, Part 1, Lect. Notes Math., 1013 (1983), pp. 362-372
  3. Lewin, M., On a Coefficient Problem for Bi-Univalent Functions, Proc. Amer. Math. Soc., 18 (1967), 1, pp. 63-68
  4. Brannan, D. A., Clunie, J. G., Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1 20, 1979), Academic Press, New York and London, 1980
  5. Netanyahu, E., The Minimal Distance of the Image Boundary from the Origin and the Second Coefficient of a Univalent Function in |z| &lt; 1, Arch. Rational Mech. Anal., 32 (1969), 2, pp. 100-112
  6. Rosihan, M. A., et al., Coefficient Estimates for Bi- Univalent Ma-Minda Starlike and Convex Functions, Appl. Math. Lett., 25 (2012), 3, pp. 344-351
  7. Brannan, D. A., Taha, T. S., On Some Classes of Bi-Univalent Functions, in: Mazhar, S. M., et al., Math. Anal. and Appl., Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60, see also Studia Univ. Babeş-Bolyai Math., 31 (1986), 2, pp. 70-77
  8. Bulut, S., Faber Polynomial Coefficient Estimates for a Comprehensive Subclass of Analytic Bi- Univalent Functions, C. R. Acad. Sci. Paris, Ser. I, 352 (2014), 6, pp. 479-484
  9. Bulut, S., et al., Faber Polynomial Coefficient Estimates for Certain Subclasses of Meromorphic Bi- Univalent Functions, Comptes Rendus Mathematique, 353 (2015), 2, pp. 113-116
  10. Caglar, M., Deniz, E., Initial Coefficients for a Subclass of Bi-Univalent Functions Defined by Salagean Differential Operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66 (2017), 1, pp. 85-91
  11. Caglar, M., Coefficient Bounds for New Subclasses of Bi-Univalent Functions, Filomat, 27 (2013), 7, pp. 1165-1171
  12. Deniz, E., Certain Subclasses of Bi-Univalent Functions Satisfying Subordinate Conditions, J. Class. Anal., 2 (2013), 1, pp. 49-60
  13. Frasin, B. A., Aouf, M. K., New Subclasses of Bi-Univalent Functions, Appl. Math. Lett., 24 (2011), 9, pp. 1569-1573
  14. Hamidi, S. G., Jahangiri J. M., Faber Polynomial Coefficient Estimates for analytic Bi-Close-to-Convex Functions, C. R. Acad. Sci. Paris, Ser. I, 352 (2014), 1, pp. 17-20
  15. Kedzierawski, A. W., Some Remarks on Bi-Univalent Functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 39 (1985), pp. 77-81
  16. Kumar, S., Estimates for the Initial Coefficients of Bi-Univalent Functions, Tamsui Oxford J. Inform. Math. Sci., 29 (2013), 4, pp. 487-504
  17. Mishra, A. K., Barık, S., Estimates for the Initial Coefficients of Bi-Univalent λ-convex Analytic Functions in the Unit Disc, Journal of Classical Analysis, 7 (2015), 1, pp. 73-81
  18. Orhan, H., et al., Initial Coefficient Bounds for a General Class of Bi-Univalent Functions, Filomat, 29 (2015), 6, pp. 1259-1267
  19. Ramachandran, C., et al., Initial Coefficient Estimates for Certain Subclasses of Bi-Univalent Functions of Ma-Minda Type, Applied Mathematical Sciences, 9 (2015), 47, pp. 2299-2308
  20. Srivastava, H. M., et al., Certain Subclasses of Analytic and Bi-Univalent Functions, Appl. Math. Lett., 23 (2010), 10, pp. 1188-1192
  21. Srivastava, H. M., et al., Coefficient Estimates for a General Subclass of Analytic and Bi-Univalent Functions, Filomat, 27 (2013), 5, pp. 831-842
  22. Srivastava, H. M., Bansal, D., Coefficient Estimates for a Subclass of Analytic and Bi-Univalent Functions, Journal of the Egyptian Mathematical Society, 23 (2015), 2, pp. 242-246
  23. Sun, Y., et al., Coefficient Estimates for Certain Subclasses of Analytic and Bi-Univalent Functions, Filomat 29 (2015), 2, pp. 351-360
  24. Tan, D. L., Coefficient Estimates for Bi-Univalent Functions, Chinese Ann. Math. Ser. A, 5 (1984), 5, pp. 559-568
  25. Zaprawa, P., Estimates of Initial Coefficients for Bi-Univalent Functions, Abstr. Appl. Anal., 2014 (2014), ID 357480
  26. Duren, P. L., Univalent Functions,Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, USA, 1983

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence