COEFFICIENTS BOUNDS FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS DEFINED BY AL-OBOUDI DIFFERENTIAL OPERATOR

by

Neslihan UYANIK ${ }^{\text {a, }}$ *and Burcin GOKKURT OZDEMIR ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics and Science Education, Faculty of Education, Anadolu University, Eskişehir, Turkey
${ }^{\mathrm{b}}$ Department of Mathematics and Science Education, Faculty of Education, Bartin University, Bartin, Turkey
Original scientific paper
https://doi.org/10.2298/TSCI22S2583U

In this paper, we investigate a new subclass $\Sigma_{\delta}^{n}(\lambda, \gamma, \varphi)$ of analytic and biunivalent functions in the open unit disk $\mathcal{U}=\{z:|z|<1\}$ defined by Al-Oboudi differential operator. We obtain coefficient bounds $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions belonging to subclass $\Sigma_{\delta}^{n}(\lambda, \gamma, \varphi)$. Relevant connections of the results presented here with various well-known results are briefly indicated.
Key words: analytic functions, univalent functions, Bi-univalent functions, subordination, Al-Oboudi differential operator

Introduction

Let \mathcal{A} denote the class of functions f of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathcal{U}=\{z:|z|<1\}$. We also denote by \mathcal{S} the class of all functions in \mathcal{A} which are univalent in \mathcal{U}.

Al-Oboudi [1] introduced the following differential operator for $f(z) \in \mathcal{A}$ which is called the Al-Oboudi differential operator:

$$
\begin{gathered}
D^{0} f(z)=f(z) \\
D^{1} f(z)=(1-\delta) f(z)+\delta z f^{\prime}(z)=D_{\delta} f(z), \quad(\delta \geq 0) \\
D^{n} f(z)=D_{\delta}\left[D^{n-1} f(z)\right] \quad(n \in \mathbb{N}=1,2,3, \ldots)
\end{gathered}
$$

We note that:

$$
\begin{equation*}
D^{n} f(z)=z+\sum_{k=2}^{\infty}[1+(k-1) \delta]^{n} a_{k} z^{k} \quad\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) \tag{2}
\end{equation*}
$$

[^0]when $\delta=1$ in (2), we get Salagean's differential operator [2].
It is well known that every $f \in \mathcal{S}$ has an inverse function f^{-1} satisfying:
$$
f^{-1}[f(z)]=z \quad(z \in \mathcal{U})
$$
and
$$
f\left[f^{-1}(w)\right]=w \quad\left[|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right]
$$
where
$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathcal{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathcal{U}. Let Σ denote the class of bi-univalent functions in \mathcal{U} given by (1). Lewin [3] introduced the bi-univalent function class and showed that $\left|a_{2}\right|<1.51$. Subsequently, Brannan and Clunie [4] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. Netanyahu [5], otherwise, showed that $\max \left|a_{2}\right|=4 / 3$. The coefficient estimate problem for each of the following Taylor Maclaurin ${ }_{c}^{f \in \in} \in \mathbb{F}$ ficients: $\left|a_{n}\right| \quad(n \in \mathbb{N} \backslash\{1,2\} ; \mathbb{N}=\{1,2,3, \ldots\})$ is still an open problem. Recently, several researchers such as $[1,3-25]$ obtained the coefficients $\left|a_{2}\right|,\left|a_{3}\right|$ of bi-univalent functions for the various subclasses of the function class Σ. Motivating with their work, we introduce a new subclass of the function class Σ and find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclass of the function class Σ employing the techniques used earlier by Srivastava et al. [20] and Frasin and Aouf [13].

Let φ be an analytic and univalent function with positive real part in $\mathcal{U}, \varphi(0)=1$, $\varphi(0)>0$ and φ maps the unit disk \mathcal{U} onto a region starlike with respect to 1 and symmetric with respect to the real axis. The Taylor's series expansion of such function is:

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\ldots \tag{3}
\end{equation*}
$$

where all coefficients are real and $B_{1}>0$. Throughout this paper we assume that the function φ satisfies the above conditions unless otherwise stated.

Definition 1. A function $f \in \Sigma$ given by (1) is said to be in the class $\Sigma_{\delta}^{n}(\lambda, \gamma, \varphi)$ if the following conditions are satisfied:

$$
1+\frac{1}{\lambda}\left\{\left[D^{n} f(z)\right]^{\prime}+\gamma z\left[D^{n} f(z)\right]^{\prime \prime}-1\right\} \prec \varphi(z) \quad(0 \leq \gamma \leq 1, \delta \geq 0, \lambda \in \mathbb{C} /\{0\}, n \in \mathbb{N}, z \in \mathcal{U})
$$

and

$$
1+\frac{1}{\lambda}\left\{\left[D^{n} g(w)\right]^{\prime}+\gamma w\left[D^{n} g(w)\right]^{\prime \prime}-1\right\} \prec \varphi(w)(0 \leq \gamma \leq 1, \delta \geq 0, \lambda \in \mathbb{C} /\{0\}, n \in \mathbb{N}, w \in \mathcal{U})
$$

where the function g is given by:

$$
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots
$$

and D^{n} is the Al-Oboudi differential operator.
In this paper, we obtain the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for $\Sigma_{\delta}^{n}(\lambda, \gamma, \varphi)$ as well as its special classes.

Firstly, in order to derive our main results, we need the following lemma.
Lemma 1. [26] Let $p(z)=1+c_{1} z+c_{2} z^{2}+\ldots \in P$, where P is the family of all functions p, analytic in \mathcal{U}, for which $\operatorname{Rep}(z)>0(z \in \mathcal{U})$. Then:

$$
\left|c_{n}\right| \leq 2 ; n=1,2,3, \ldots
$$

Coefficients bounds for the class $\Sigma_{\delta}^{n}(\lambda, \gamma, \varphi)$

Theorem 1. Let $f(z) \in \Sigma_{\delta}^{n}(\lambda, \gamma, \varphi)$ be of the form (1). Then:

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\lambda| \sqrt{B_{1}^{3}}}{\sqrt{\left|3 \lambda B_{1}^{2}(1+2 \delta)^{n}(1+2 \gamma)+4(1+\delta)^{2 n}(1+\gamma)^{2}\left(B_{1}-B_{2}\right)\right|}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq B_{1}|\lambda|\left[\frac{B_{1}|\lambda|}{4(1+\delta)^{2 n}(1+\gamma)^{2}}+\frac{1}{3(1+2 \delta)^{n}(1+2 \gamma)}\right] \tag{5}
\end{equation*}
$$

Proof. Since $f \in \Sigma_{\delta}^{n}(\lambda, \gamma, \varphi)$, there exist two analytic functions $u, v: \mathcal{U} \rightarrow \mathcal{U}$, with $u(0)=v(0)=0$, such that:

$$
\begin{equation*}
1+\frac{1}{\lambda}\left\{\left[D^{n} f(z)\right]^{\prime}+\gamma z\left[D^{n} f(z)\right]^{\prime \prime}-1\right\}=\varphi[u(z)] \quad(z \in \mathcal{U}) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\lambda}\left\{\left[D^{n} g(w)\right]^{\prime}+\gamma w\left[D^{n} g(w)\right]^{\prime \prime}-1\right\}=\varphi[v(w)] \quad(w \in \mathcal{U}) \tag{7}
\end{equation*}
$$

Define the function p and q as:

$$
p(z)=\frac{1+u(z)}{1-u(z)}=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots
$$

and

$$
q(w)=\frac{1+v(w)}{1-v(w)}=1+b_{1} w+b_{2} w^{2}+b_{3} w^{3}+\ldots
$$

or equivalently:

$$
\begin{equation*}
u(z)=\frac{p(z)-1}{p(z)+1}=\frac{c_{1}}{2} z+\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\frac{1}{2}\left[c_{3}+\frac{c_{1}}{2}\left(\frac{c_{1}^{2}}{2}-c_{2}\right)-\frac{c_{1} c_{2}}{2}\right] z^{3} \ldots \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
v(w)=\frac{q(w)-1}{q(w)+1}=\frac{b_{1}}{2} w+\frac{1}{2}\left(b_{2}-\frac{b_{1}^{2}}{2}\right) w^{2}+\frac{1}{2}\left[b_{3}+\frac{b_{1}}{2}\left(\frac{b_{1}^{2}}{2}-b_{2}\right)-\frac{b_{1} b_{2}}{2}\right] w^{3} \ldots \tag{9}
\end{equation*}
$$

If we use (8) and (9) in (6) and (7) along with (3), we have:

$$
\begin{equation*}
1+\frac{1}{\lambda}\left\{\left[D^{n} f(z)\right]^{\prime}+\gamma z\left[D^{n} f(z)\right]^{\prime \prime}-1\right\}=1+\frac{1}{2} B_{1} c_{1} z+\left[\frac{1}{2} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} c_{1}^{2}\right] z^{2}+\ldots \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\lambda}\left\{\left[D^{n} g(w)\right]^{\prime}+\gamma w\left[D^{n} g(w)\right]^{\prime \prime}-1\right\}=1+\frac{1}{2} B_{1} b_{1} w+\left[\frac{1}{2} B_{1}\left(b_{2}-\frac{b_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} b_{1}^{2}\right] w^{2}+\ldots . \tag{11}
\end{equation*}
$$

It follows from (10) and (11) that:

$$
\begin{gather*}
\frac{2(1+\delta)^{n}(1+\gamma) a_{2}}{\lambda}=\frac{1}{2} B_{1} c_{1} \tag{12}\\
\frac{3(1+2 \delta)^{n}(1+2 \gamma) a_{3}}{\lambda}=\frac{1}{2} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} c_{1}^{2} \tag{13}
\end{gather*}
$$

and

$$
\begin{gather*}
-\frac{2(1+\delta)^{n}(1+\gamma) a_{2}}{\lambda}=\frac{1}{2} B_{1} b_{1} \tag{14}\\
\frac{3(1+2 \delta)^{n}(1+2 \gamma)\left(2 a_{2}^{2}-a_{3}\right)}{\lambda}=\frac{1}{2} B_{1}\left(b_{2}-\frac{b_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} b_{1}^{2} \tag{15}
\end{gather*}
$$

From (12) and (14) we obtain:

$$
\begin{equation*}
c_{1}=-b_{1} \tag{16}
\end{equation*}
$$

By adding (13) to (15) and combining this with (12) and (14), we get:

$$
\begin{equation*}
a_{2}^{2}=\frac{\lambda^{2} B_{1}^{3}\left(b_{2}+c_{2}\right)}{4\left[3 \lambda B_{1}^{2}(1+2 \delta)^{n}(1+2 \gamma)+4(1+\delta)^{2 n}(1+\gamma)^{2}\left(B_{1}-B_{2}\right)\right]} \tag{17}
\end{equation*}
$$

Subtracting (13) from (15), if we use (12) and applying (16), we have:

$$
\begin{equation*}
a_{3}=\frac{\lambda^{2} B_{1}^{2} b_{1}^{2}}{16(1+\delta)^{2 n}(1+\gamma)^{2}}+\frac{\lambda B_{1}\left(c_{2}-b_{2}\right)}{12(1+2 \delta)^{n}(1+2 \gamma)} \tag{18}
\end{equation*}
$$

Finally, in view of Lemma 1, we get results (4) to (5) asserted by the Theorem 1.

Corollaries and consequences

i) If we set:

$$
\lambda=e^{i \theta} \cos \theta\left(-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right)
$$

and

$$
\varphi(z)=\frac{1+(1-2 \tau) z}{1-z}=1+2(1-\tau) z+2(1-\tau) z^{2}+\ldots \quad(0 \leq \tau<1)
$$

which gives $B_{1}=B_{2}=2(1-\tau)$, in Theorem 1, we can have the following corollary.

Corollary 1. Let:

$$
f(z) \in \Sigma_{\delta}^{n}\left[e^{i \theta} \cos \theta, \gamma, \frac{1+(1-2 \tau) z}{1-z}\right]
$$

be of the form (1). Then:

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\tau)}{3(1+2 \delta)^{n}(1+2 \gamma)} \cos \theta} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq 2(1-\tau)\left[\frac{(1-\tau) \cos \theta}{2(1+\delta)^{2 n}(1+\gamma)^{2}}+\frac{1}{3(1+2 \delta)^{n}(1+2 \gamma)}\right] \cos \theta \tag{20}
\end{equation*}
$$

Remark 1. For $\gamma=0$, Corollary 1 simplifies to the following form.
Corollary 2. Let:

$$
f(z) \in \sum_{\delta}^{n}\left[e^{i \theta} \cos \theta, 0, \frac{1+(1-2 \tau) z}{1-z}\right]
$$

be of the form (1). Then:

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\tau)}{3(1+2 \delta)^{n}} \cos \theta} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq 2(1-\tau)\left[\frac{(1-\tau) \cos \theta}{2(1+\delta)^{2 n}}+\frac{1}{3(1+2 \delta)^{n}}\right] \cos \theta \tag{22}
\end{equation*}
$$

ii) If we set $\lambda=1$ and:

$$
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\ldots \quad(0<\alpha \leq 1)
$$

which gives $B_{1}=2 \alpha, B_{2}=2 \alpha^{2}$, in Theorem 1 , we can obtain the following corollary.
Corollary 3. Let:

$$
f(z) \in \sum_{\delta}^{n}\left[1, \gamma,\left(\frac{1+z}{1-z}\right)^{\alpha}\right]
$$

be of the form (1). Then:

$$
\begin{equation*}
\left|a_{2}\right| \leq \alpha \sqrt{\frac{2}{3(1+2 \delta)^{n}(1+2 \gamma) \alpha+2(1+\delta)^{2 n}(1+\gamma)^{2}(1-\alpha)}} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq\left[\frac{\alpha^{2}}{(1+\delta)^{2 n}(1+\gamma)^{2}}+\frac{2 \alpha}{3(1+2 \delta)^{n}(1+2 \gamma)}\right] \tag{24}
\end{equation*}
$$

Remark 2. In its special case when $\gamma=0$ in Corollary 3., we can get the following corollary.

Corollary 4. Let:

$$
f(z) \in \sum_{\delta}^{n}\left[1,0,\left(\frac{1+z}{1-z}\right)^{\alpha}\right]
$$

be of the form (1). Then:

$$
\begin{equation*}
\left|a_{2}\right| \leq \alpha \sqrt{\frac{2}{3 \alpha(1+2 \delta)^{n}+2(1-\alpha)(1+\delta)^{2 n}}} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq\left[\frac{\alpha^{2}}{(1+\delta)^{2 n}}+\frac{2 \alpha}{3(1+2 \delta)^{n}}\right] \tag{26}
\end{equation*}
$$

Remark 3.

i. If we take $n=0$ in Theorem 1, we obtain the corresponding result given earlier by Deniz [12] (also Srivastava and Bansal [22]).
ii. Putting $\lambda=1, \gamma=0, n=0$ in Theorem 1 , we have the corresponding result given earlier by Ali et al. [6].
iii. For $\beta=0, n=0$ in Corollary 2 and $\gamma=0, n=0$ in Corollary 3, we get the corresponding result given earlier by Srivastava et al. [21].
iv. Putting $\delta=1$ in Theorem 1, we obtain the corresponding result given earlier by Ca glar and Deniz [10].

References

[1] Al-Oboudi, F. M., On Univalent Functions Defined by a Generalized Salagean Operator, Int. J. Math. Math. Sci., 2004 (2004), 27, pp. 1429-1436
[2] Salagean, G. S., Subclasses of Univalent Functions, Complex Analysis, Proceedings, 5 ${ }^{\text {th }}$ Rom.-Finn. Semin., Bucharest 1981, Part 1, Lect. Notes Math., 1013 (1983), pp. 362-372
[3] Lewin, M., On a Coefficient Problem for Bi-Univalent Functions, Proc. Amer. Math. Soc., 18 (1967), 1, pp. 63-68
[4] Brannan, D. A., Clunie, J. G., Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1 20, 1979), Academic Press, New York and London, 1980
[5] Netanyahu, E., The Minimal Distance of the Image Boundary from the Origin and the Second Coefficient of a Univalent Function in $|z|<1$, Arch. Rational Mech. Anal., 32 (1969), 2, pp. 100-112
[6] Rosihan, M. A., et al., Coefficient Estimates for Bi- Univalent Ma-Minda Starlike and Convex Functions, Appl. Math. Lett., 25 (2012), 3, pp. 344-351
[7] Brannan, D. A., Taha, T. S., On Some Classes of Bi-Univalent Functions, in: Mazhar, S. M., et al., Math. Anal. and Appl., Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60, see also Studia Univ. Babeş-Bolyai Math., 31 (1986), 2, pp. 70-77
[8] Bulut, S., Faber Polynomial Coefficient Estimates for a Comprehensive Subclass of Analytic BiUnivalent Functions, C. R. Acad. Sci. Paris, Ser. I, 352 (2014), 6, pp. 479-484
[9] Bulut, S., et al., Faber Polynomial Coefficient Estimates for Certain Subclasses of Meromorphic BiUnivalent Functions, Comptes Rendus Mathematique, 353 (2015), 2, pp. 113-116
[10] Caglar, M., Deniz, E., Initial Coefficients for a Subclass of Bi-Univalent Functions Defined by Salagean Differential Operator, Commun. Fac. Sci. Univ. Ank. Ser. Al Math. Stat., 66 (2017), 1, pp. 85-91
[11] Caglar, M., Coefficient Bounds for New Subclasses of Bi-Univalent Functions, Filomat, 27 (2013), 7, pp. 1165-1171
[12] Deniz, E., Certain Subclasses of Bi-Univalent Functions Satisfying Subordinate Conditions, J. Class. Anal., 2 (2013), 1, pp. 49-60
[13] Frasin, B. A., Aouf, M. K., New Subclasses of Bi-Univalent Functions, Appl. Math. Lett., 24 (2011), 9, pp. 1569-1573
[14] Hamidi, S. G., Jahangiri J. M., Faber Polynomial Coefficient Estimates for analytic Bi-Close-to-Convex Functions, C. R. Acad. Sci. Paris, Ser. I, 352 (2014), 1, pp. 17-20
[15] Kedzierawski, A. W., Some Remarks on Bi-Univalent Functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 39 (1985), pp. 77-81
[16] Kumar, S., Estimates for the Initial Coefficients of Bi-Univalent Functions, Tamsui Oxford J. Inform. Math. Sci., 29 (2013), 4, pp. 487-504
[17] Mishra, A. K., Barık, S., Estimates for the Initial Coefficients of Bi-Univalent λ-convex Analytic Functions in the Unit Disc, Journal of Classical Analysis, 7 (2015), 1, pp. 73-81
[18] Orhan, H., et al., Initial Coefficient Bounds for a General Class of Bi-Univalent Functions, Filomat, 29 (2015), 6, pp. 1259-1267
[19] Ramachandran, C., et al., Initial Coefficient Estimates for Certain Subclasses of Bi-Univalent Functions of Ma-Minda Type, Applied Mathematical Sciences, 9 (2015), 47, pp. 2299-2308
[20] Srivastava, H. M., et al., Certain Subclasses of Analytic and Bi-Univalent Functions, Appl. Math. Lett., 23 (2010), 10, pp. 1188-1192
[21] Srivastava, H. M., et al., Coefficient Estimates for a General Subclass of Analytic and Bi-Univalent Functions, Filomat, 27 (2013), 5, pp. 831-842
[22] Srivastava, H. M., Bansal, D., Coefficient Estimates for a Subclass of Analytic and Bi-Univalent Functions, Journal of the Egyptian Mathematical Society, 23 (2015), 2, pp. 242-246
[23] Sun, Y., et al., Coefficient Estimates for Certain Subclasses of Analytic and Bi-Univalent Functions, Filomat 29 (2015), 2, pp. 351-360
[24] Tan, D. L., Coefficient Estimates for Bi-Univalent Functions, Chinese Ann. Math. Ser. A, 5 (1984), 5, pp. 559-568
[25] Zaprawa, P., Estimates of Initial Coefficients for Bi-Univalent Functions, Abstr. Appl. Anal., 2014 (2014), ID 357480
[26] Duren, P. L., Univalent Functions,Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, USA, 1983

[^0]: * Corresponding author, e-mail: nuyanik @anadolu.edu.tr

