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In this paper, we investigate a new subclass ( , , )n
     of analytic and bi-

univalent functions in the open unit disk : 1z z= { }  defined by Al-Oboudi 
differential operator. We obtain coefficient bounds 2| |a  and 3| |a  for functions 
belonging to subclass ( , , )n

    . Relevant connections of the results presented 
here with various well-known results are briefly indicated.  
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Introduction  

Let  denote the class of functions f  of the form: 

 
2

( )  k
k

k

f z z a z


=

= +  (1) 

which are analytic in the open unit disk : 1 .z z= { | | }  We also denote by  the class of all 

functions in  which are univalent in . 

Al-Oboudi [1] introduced the following differential operator for ( )f z   which is 

called the Al-Oboudi differential operator: 

 0 ( ) ( )D f z f z=  

 ( )1 '( ) (1 ) ( ) ( ) ( ), 0D f z f z zf z D f z  = − + =   

 1( ) [ ( )] ( 1,2,3,...)n nD f z D D f z n
−=  =  

We note that: 

 0

2

( ) [1 ( 1) ] ( {0})n n k
k

k

D f z z k a z n


=

= + + −  =   (2) 

–––––––––––––– 
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when 1 =  in (2), we get Salagean’s differential operator [2]. 

It is well known that every f   has an inverse function 1f −  satisfying: 

 1[ ( )]  ( )f f z z z− =   

and  

 1
0 0

1
[ ( )]      | | ( ); ( )

4
f f w w w r f r f−  

=   
 

 

where 

 1 2 2 3 3 4
2 2 3 2 2 3 4( ) (2 ) (5 5 ) .f w w a w a a w a a a a w− = − + − − − + +  

A function f   is said to be bi-univalent in  if both ( )f z  and 1( )f z−  are 

univalent in .  Let Σ  denote the class of bi-univalent functions in  given by (1). Lewin 

[3] introduced the bi-univalent function class and showed that 2| | 1.51.a   Subsequently, 

Brannan and Clunie [4] conjectured that 2| | 2.a   Netanyahu [5], otherwise, showed that 

2
Σ

max| | 4/3.
f

a


=  The coefficient estimate problem for each of the following Taylor Maclaurin 

coefficients: | |na  ( \ 1,2 ; 1,2,3,... )n ={ } { }  is still an open problem. Recently, several 

researchers such as [1, 3-25] obtained the coefficients |a2|, |a3| of bi-univalent functions for the 

various subclasses of the function class Ʃ. Motivating with their work, we introduce a new 

subclass of the function class Ʃ and find estimates on the coefficients |a2| and |a3| for functions 

in these new subclass of the function class Ʃ employing the techniques used earlier by 

Srivastava et al. [20] and Frasin and Aouf [13]. 

Let φ be an analytic and univalent function with positive real part in , (0) 1, =  
' (0) 0   and φ maps the unit disk  onto a region starlike with respect to 1  and symmetric 

with respect to the real axis. The Taylor’s series expansion of such function is: 

 2 3
1 2 3( ) 1 ...,z B z B z B z = + + + +  (3) 

where all coefficients are real and 1 0.B   Throughout this paper we assume that the function 

φ satisfies the above conditions unless otherwise stated. 

Definition 1. A function f   given by (1) is said to be in the class ( , , )n
     if 

the following conditions are satisfied: 

 ' ''1
1 [ ( )] [ ( )] 1 ( )    (0 1,   0, / ,   ,   )n nD f z z D f z z n z    


+ + −      { } {0}  

and 

 ( )' ''1
1 [ ( )] [ ( )] 1 ( )  0 1,   0, / 0 ,  , n nD g w w D g w w n w    


+ + −      { } { }  

where the function g is given by: 

1 2 2 3 3 4
2 2 3 2 2 3 4( ) ( ) (2 ) (5 5 ) ...g w f w w a w a a w a a a a w−= = − + − − − + +

 

and Dn is the Al-Oboudi differential operator.  

In this paper, we obtain the estimates on the coefficients |a2| and |a3| for Σ ,( ),n
     

as well as its special classes. 
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Firstly, in order to derive our main results, we need the following lemma. 

Lemma 1. [26] Let 2
1 2( ) 1 ... ,p z c z c z P= + + +   where P is the family of all 

functions p, analytic in , for which Rep( ) 0z   ( ).z  Then: 

 | | 2; 1,2,3,....nc n =  

Coefficients bounds for the class ( , , )n
δΣ λ γ φ  

Theorem 1. Let ( ) ( , , )nf z      be of the form (1). Then: 

 

3
1

2
2 2 2
1 1 2

| |
| |

3 (1 2 ) (1 2 ) 4(1 ) ( ) ( )1n n

B
a

B B B



    


+ + + + + −

 (4) 

and 

 1
1 23 2

| | 1
| | | |

4(1 ) (1 ) 3(1 2 ) (1 2 )n n

B
a B




   

 
 + 

+ + + + 
 (5) 

Proof. Since Σ ( , , ),nf      there exist two analytic functions , : ,u v →  with 
(0) (0) 0,u v= =  such that: 

 ' ''1
1 [ ( )] [ ( )] 1 [ ( )] ( )n nD f z z D f z u z z 


+ + − = { }  (6) 

and  

 ' ''1
1 [ ( )] [ ( )] 1 [ ( )] ( )n nD g w w D g w v w w 


+ + − = { }  (7) 

Define the function p and q as: 

 2 3
1 2 3

1 ( )
( ) 1 ...

1 ( )

u z
p z c z c z c z

u z

+
= = + + + +

−
 

and 

 2 3
1 2 3

1 ( )
( ) 1 ...

1 ( )

v w
q w b w b w b w

v w

+
= = + + + +

−
 

or equivalently: 

 
2 2

2 31 1 1 1 1 2
2 3 2

( ) 1 1 1
( ) ...

( ) 1 2 2 2 2 2 2 2

c c c c c cp z
u z z c z c c z

p z

    −
= = + − + + − −       +      

 (8) 

and 

 
2 2

2 31 1 1 1 1 2
2 3 2

( ) 1 1 1
( ) ....

( ) 1 2 2 2 2 2 2 2

b b b b b bq w
v w w b w b b w

q w

    −
= = + − + + − −       +      

 (9) 

If we use (8) and (9) in (6) and (7) along with (3), we have: 

 
2

' '' 2 21
1 1 1 2 2 1

1 1 1 1
1 [ ( )] [ ( )] 1 1 ...

2 2 2 4

n n c
D f z z D f z B c z B c B c z



  
+ + − = + + − + +   

   

{ }  (10) 
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and 

 
2

' '' 2 21
1 1 1 2 2 1

1 1 1 1
1 [ ( )] [ ( )] 1 1 ....

2 2 2 4

n n b
D g w w D g w B b w B b B b w



  
+ + − = + + − + +   

   

{ }  (11) 

It follows from (10) and (11) that: 

 2
1 1

2(1 ) (1 ) 1

2

n a
B c

 



+ +
=  (12) 

 
2

23 1
1 2 2 1

3(1 2 ) (1 2 ) 1 1

2 2 4

n a c
B c B c

 



 + +
= − +  

 

 (13) 

and 

 2
1 1

2(1 ) (1 ) 1

2

n a
B b

 



+ +
− =  (14) 

 
2 2

22 3 1
1 2 2 1

3(1 2 ) (1 2 )(2 ) 1 1

2 2 4

n a a b
B b B b

 



 + + −
= − +  

 

 (15) 

From (12) and (14) we obtain: 

 1 1c b= −  (16) 

By adding (13) to (15) and combining this with (12) and (14), we get: 

 
2 3

2 1 2 2
2 2 2 2

1 1 2

( )

4[3 (1 2 ) (1 2 ) 4(1 ) (1 ) ( )]n n

B b c
a

B B B



    

+
=

+ + + + + −
 (17) 

Subtracting (13) from (15), if we use (12) and applying (16), we have: 

 
2 2 2

1 1 1 2 2
3 2 2

( )

16(1 ) (1 ) 12(1 2 ) (1 2 )n n

B b B c b
a

 

   

−
= +

+ + + +
 (18) 

Finally, in view of Lemma 1, we get results (4) to (5) asserted by the Theorem 1.  

Corollaries and consequences  

i) If we set: 

 cos   
2 2

ie   
  

 
= −   

 
 

and  

 21 (1 2 )
( ) 1 2(1 ) 2(1 ) ...  (0 1)

1

z
z z z

z


   

+ −
= = + − + − +  

−
 

which gives 1 2 2(1 ),B B = = −  in Theorem 1, we can have the following corollary. 
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Corollary 1. Let: 

 
1 (1 2 )

( ) , ,
1

n i z
f z e cos

z





 

+ − 
  − 

  

be of the form (1). Then: 

 2

2(1 )
| | cos

3(1 2 ) (1 2 )n
a




 

−


+ +
 (19) 

and 

 3 2 2

(1 )cos 1
| | 2(1 ) cos

2(1 ) (1 ) 3(1 2 ) (1 2 )n n
a

 
 

   

 −
 − + 

+ + + + 
 (20) 

Remark 1. For 0, =  Corollary 1 simplifies to the following form.  

Corollary 2. Let: 

 
1 (1 2 )

( ) ,0,
1

n
i z

f z e cos
z








+ − 
  − 
   

be of the form (1). Then: 

 2

2(1 )
| | cos

3(1 2 )n
a






−


+
 (21) 

and 

 3 2

(1 )cos 1
| | 2(1 ) cos

2(1 ) 3(1 2 )n n
a

 
 

 

 −
 − + 

+ + 
 (22) 

ii) If we set 1 =  and: 

 2 21
( ) 1 2 2 ...  (0 1)

1

z
z z z

z



   
+ 

= = + + +   
− 

 

which gives 1 2 ,B =  2
2 ,2B =  in Theorem 1, we can obtain the following corollary. 

Corollary 3. Let: 

 
1

( ) 1, ,
1

n z
f z

z






 + 

   
−   

   

be of the form (1). Then: 

 2 2 2

2
| |

3(1 2 ) (1 2 ) 2(1 ) (1 ) (1 )n n
a 

     


+ + + + + −
 (23) 

and 

 
2

23 2

2
| |

(1 ) (1 ) 3(1 2 ) (1 2 )n n
a

 

   

 
 + 

+ + + + 
 (24) 
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Remark 2. In its special case when 0 =  in Corollary 3., we can get the following 

corollary.  

Corollary 4. Let: 

 
1

( ) 1,0,
1

n z
f z

z





 + 
   

−   
   

be of the form (1). Then: 

 2 2

2
| |

3 (1 2 ) 2(1 )(1 )n n
a 

   


+ + − +
 (25) 

and 

 
2

3 2

2
| |

(1 ) 3(1 2 )n n
a

 

 

 
 + 

+ + 

 (26) 

Remark 3.  
i. If we take 0n =  in Theorem 1, we obtain the corresponding result given earlier by 

Deniz [12] (also Srivastava and Bansal [22]). 

ii. Putting 1, =  0, =  0n =  in Theorem 1, we have the corresponding result given 

earlier by Ali et al. [6]. 

iii. For 0, =  0n =  in Corollary 2 and 0, =  0n =  in Corollary 3, we get the corre-

sponding result given earlier by Srivastava et al. [21]. 

iv. Putting 1 =  in Theorem 1, we obtain the corresponding result given earlier by Ca-

glar and Deniz [10].  
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