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In this paper, we investigate a new subclass £3(Z,y,¢) of analytic and bi-
univalent functions in the open unit disk U={z:|z|<1} defined by Al-Oboudi
differential operator. We obtain coefficient bounds |a,| and |as| for functions
belonging to subclass =% (4,7,9) . Relevant connections of the results presented
here with various well-known results are briefly indicated.
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Introduction
Let A denote the class of functions f of the form:
f(z)=2+> az" (1)
k=2

which are analytic in the open unit disk ¢/ ={z ]z |<1}. We also denote by S the class of all

functions in /A which are univalentin U/ .
Al-Oboudi [1] introduced the following differential operator for f(z) e. A which is

called the Al-Oboudi differential operator:
D°f(z) = f(2)
D'f(z)=(1-6)f(z) +5zf (z2)=Dsf(z), (520)
D"f(z)=Ds[D"*f(z)] (neN=123,..)

We note that:

D”f(z):z+i[1+(k—1)5]"akzk (neN, =N U{0}) @)
k=2
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when & =1 in (2), we get Salagean’s differential operator [2].
It is well known that every f e S has an inverse function f ™ satisfying:

fUf(2)]=2 (zel)

and
FE W] =w [|W|<r0(f);r0(f)zﬂ

where
fH(w) = w—a,w? + (222 —a, )W’ — (5a3 —5aya, +a,)W* +....

A function f e A is said to be bi-univalent in ¢/ if both f(z) and f!(z) are
univalent in U. Let £ denote the class of bi-univalent functions in & given by (1). Lewin
[3] introduced the bi-univalent function class and showed that |a,|<1.51. Subsequently,
Brannan and Clunie [4] conjectured that |a, |< J2. Netanyahu [5], otherwise, showed that
rpaxlazl =4/3, The coefficient estimate problem for each of the following Taylor Maclaurin
coefficients: la,] (neN\V{L2};N={1,23,.}) is still an open problem. Recently, several
researchers such as [1, 3-25] obtained the coefficients |a|, |as| of bi-univalent functions for the
various subclasses of the function class X. Motivating with their work, we introduce a new
subclass of the function class = and find estimates on the coefficients |az| and |as| for functions
in these new subclass of the function class ¥ employing the techniques used earlier by
Srivastava et al. [20] and Frasin and Aouf [13].

' Let ¢ be an analytic and univalent function with positive real part in U, ¢(0) =1,
@ (0) >0 and ¢ maps the unit disk &/ onto a region starlike with respect to 1 and symmetric
with respect to the real axis. The Taylor’s series expansion of such function is:

@(z) =1+ Bz +B,2% + By,2% +..., @)

where all coefficients are real and B, > 0. Throughout this paper we assume that the function
o satisfies the above conditions unless otherwise stated.

Definition 1. A function f € £ given by (1) is said to be in the class =5(4,7,¢) if
the following conditions are satisfied:

1+%{[D”f(z)]' +77[D"f(2)] -L<p(z) (0<y<1,6>0,AeC/{0}, neN, zel)
and
l+%{[D”g(w)]' +WD"gW)] -1} < pw)(0< ¥ <1, § 20,4 C/{0},ne N,we U)
where the function g is given by:
g(w) = f H(w) =w—a,w? + (2aZ —a;)w® — (5a5 —5a,a, +a,)w* +...
and D" is the Al-Oboudi differential operator.

In this paper, we obtain the estimates on the coefficients |az| and |as| for £5 (4,7, )
as well as its special classes.
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Firstly, in order to derive our main results, we need the following lemma.
Lemma 1. [26] Let p(z)=1+c;z+cC,z°+..c P, where P is the family of all
functions p, analytic in U , for which Rep(z) >0 (z e U). Then:

lc,|<£2;n=123,...

Coefficients bounds for the class X (4,7,9)
Theorem 1. Let f(z) e Z5(4,7,¢) be of the form (1). Then:

S @

\/\3/1312(1+ 26)" 1+ 27) + 40+ 5)”" (1+ 1) (B, - By)

A L
o= BML(u Oy 320 W 27)} K

la,| <

and

Proof. Since f e £}(4,7,¢), there exist two analytic functions u,v:U — U, with
u(0) =v(0) =0, such that:

1+ %{[D“ f(2)] +y2D"f (2)] -L=olu(2)] (zel) (6)
and
1+ %{[D“g(w)]’ +yW[D"gW)] -1} = g[v(w)] (wel) @

Define the function p and q as:
1+u(z)
1-u(2)

2 3
=1l4+Gz+Cy2° +C327 +...

p(z)=

and
1+v(w)

—Vv(w)

=1+bw+b,w? +bw? +...

aw) =—"7>

or equivalently:

2 i 2
u(z) =28 1_% Z(Cz—ijz A1 c3+&[i_czj_ﬁ 2. (®)

p(z)+1 2
and

2
P (0 - (bz by

gt 2" 2}Wz+1b3+b{bl sz e o

2

If we use (8) and (9) in (6) and (7) along with (3), we have:

2
1+%{[Dn f(2)] +y2[D"f (2)] —1}:1+%Blclz J{%B{cz —%}L%Bch}zz +... (10
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and
2
1+%{[D”g(w)]’ +yw[D"g(w)] -1} :1+%Blle+EBl(b2 —%}%szf}wz +... (12)

It follows from (10) and (11) that:
2+6)" U+, 1

2 > Bio (12)
3(1+25)"(1+2 2
fe 2 G 200 =%B{%—%J+%Bch 13)
and

C2(1+8)"A+p)a, 1

2 =3 Biby (14)
3(1+25)"(1+2y)(2a5 —a5) 1 B 1L,
2 _ZBl(bZ 2J+4sz1 (15)
From (12) and (14) we obtain:

¢ = (16)

By adding (13) to (15) and combining this with (12) and (14), we get:

2°By (b, +65) an

2 _
%= ABABE (1+268)" L+ 2y) + 4(1+ 8)*" A+ 7)? (B, - B,)]

Subtracting (13) from (15), if we use (12) and applying (16), we have:

— j’ZBlzblz + ﬂ’Bl(CZ _bZ) (18)
161+ 8)*"(L+7)* 12(1+25)"(A+2y)

a3

Finally, in view of Lemma 1, we get results (4) to (5) asserted by the Theorem 1.

Corollaries and consequences

i) If we set:
A =e"%cos6 (—£<9<£J
2 2
and
(o(z)ZM:1+2(1—T)Z+2(1—7)22+... (0<7<l)

which gives B, =B, =2(1—-7), in Theorem 1, we can have the following corollary.
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Corollary 1. Let:

f(z)exh {eigcose, 7, M}
1-z

be of the form (1). Then:

la,| < 2-7) cosd (19)

31+25)"(1+2y)
and
lag| < 2(1—7) (1_?‘305‘9 - L cosd (20)
20+ 0)" A+ )" 3(1+28)"1+2y)

Remark 1. For y =0, Corollary 1 simplifies to the following form.
Corollary 2. Let:

1+ (1—2r)2}
1-z

la,] < /ﬁcose (21)

(1-17)cosd 1
TR . cosé
2(1+0) 3(1+26)

n R
f(z)e z[e'gcosa, 0,
)

be of the form (1). Then:

and

lag| < 2(1—7){ (22)
i) Ifwe set A =1 and:
(p(z)zcij —1+ 207 +2a%2 +... (0<a<1)
A

which gives B, =2a, B, = 22, in Theorem 1, we can obtain the following corollary.
Corollary 3. Let:
n 1+z2)*
f(z Ly,| —
( )eg{ y (1_Zj }
be of the form (1). Then:

8] < 2 23)
3(1+28)" A+ 2p)a + 2(L+ 8)*" 1+ )’ A- )

and

a2 2a
o= [(1+ ) (L+ ) 31+ 20) L+ 27)} -
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Remark 2. In its special case when y =0 in Corollary 3., we can get the following
corollary.
Corollary 4. Let:

n 1+2)*
f(Z) E; l,O,(E)

be of the form (1). Then:

2
laZlSa\/ 3a(l+25)" +2(L— @)L+ 5)*" @)

and

a? 2a
< 2
la"’l{(u 5 30+ 25)“} (0)

Remark 3.
i If we take n=0 in Theorem 1, we obtain the corresponding result given earlier by

Deniz [12] (also Srivastava and Bansal [22]).

ii. Putting 1=1, =0, n=0 in Theorem 1, we have the corresponding result given
earlier by Ali et al. [6].

iii. For =0, n=0 in Corollary 2 and y =0, n=0 in Corollary 3, we get the corre-
sponding result given earlier by Srivastava et al. [21].

iv.  Putting 6 =1 in Theorem 1, we obtain the corresponding result given earlier by Ca-
glar and Deniz [10].
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