THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

THE HYPERBOLIC-TYPE K-FIBONACCI SEQUENCES AND THEIR APPLICATIONS

ABSTRACT
In this study, we define hyperbolic-type k-Fibonacci numbers and then give the relationships between the k-step Fibonacci numbers and the hyperbolic-type k-Fibonacci numbers. In addition, we study the hyperbolic-type k-Fibonacci sequence modulo m and then we give periods of the Hperbolic-type k-Fibonacci sequences for any k and m which are related the periods of the k-step Fibonacci sequences modulo m. Furthermore, we extend the hyperbolic-type k-Fibonacci sequences to groups. Finally, we obtain the periods of the hyperbolic-type 2-Fibonacci sequences in the dihedral group D2m, (m ≥ 2) with respect to the generating pairs (x,y) and (y, x).
KEYWORDS
PAPER SUBMITTED: 2022-08-15
PAPER REVISED: 2022-09-10
PAPER ACCEPTED: 2022-09-20
PUBLISHED ONLINE: 2023-01-29
DOI REFERENCE: https://doi.org/10.2298/TSCI22S2551T
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Special issue 2, PAGES [551 - 558]
REFERENCES
  1. Kalman, D., Generalized Fibonacci Numbers by Matrix Methods, Fibonacci Quart, 20 (1982), 1, pp. 73- 76
  2. Deveci, O., Shannon, A. G., The Complex-Type k-Fibonacci Sequences and their Applications, Commun. Algebra. 49, (2021), 3, pp. 1352-1367
  3. Horadam, A. F., Complex Fibonacci Numbers and Fibonacci Quaternions, Am. Math. Mon., 70 (1963), 3, pp. 289-291
  4. Knox, S. W., Fibonacci Sequences in Finite Groups, Fibonacci Quart, 30 (1992), 2, pp. 116-120
  5. Ozgur, N. Y., On the Sequences Related to Fibonacci and Lucas Numbers, J. Korean Math. Soc., 42 (2005), 1, pp. 135-151
  6. Ozkan, E., Truncated Lucas Sequences and Its Period, Appl. Math. Comput., 232 (2014), Apr., pp. 285- 291
  7. Ozkan, E., et al., 3-Step Fibonacci Series Modulo m, Appl. Math. Comput., 143 (2003), 1, pp. 165-172
  8. Shannon, A. G., A Method of Carlitz Applied to the kth Power Generating Function for Fibonacci Numbers, Fibonacci Quart., 12 (1974), 3, pp. 293-299
  9. Shannon, A. G., Explicit Expressions for Powers of Arbitrary Order Linear Recursive Sequences, Fibonacci Quart., 12 (1974), 3, pp. 281-287
  10. Shannon, A. G., Some Properties of a Fundamental Recursive Sequence of Arbitrary Order, Fibonacci Quart., 12 (1974), 4, pp. 327-335
  11. Shannon, A. G., Ordered Partitions and Arbitrary Order Linear Recurrence Relations, Math. Student., 43 (1976), 3, pp. 110-117
  12. Stakhov, A., Rozin, B., Theory of Binet Formulas for Fibonacci and Lucas p-Numbers, Chaos Solitons Fract., 27 (2006), 5, pp. 1162-1177
  13. Stakhov, A. P., Rozin, B., The Continuous Functions for the Fibonacci and Lucas p-Numbers, Chaos Solitons Fract., 28 (2006), 4, pp. 1014-1025
  14. Tas, S., The Hyperbolic Quadrapell Sequences, Eastern Anatolian Journal of Science., 7 (2021), 1, pp. 25-29
  15. Tas, S., On Hyperbolic Jacobsthal-Lucas Sequence, Fundamental Journal of Mathematics and Applications, 5(2022), 1, pp. 16-20
  16. Lu, K., Wang, J., k-step Fibonacci Sequence Modulo m, Util. Math., 71 (2006), Nov., pp. 169-177
  17. Wall, D. D., Fibonacci Series Modulo m, Am. Math. Mon., 67 (1960), 6, pp. 525-532
  18. Tasci, D., Firengiz, M. C., Incomplete Fibonacci and Lucas p-Numbers, Math. Comput. Modell., 52 (2010), 9-10, pp. 1763-1770
  19. Aydin, H., Dikici, R., General Fibonacci Sequences in Finite Groups, Fibonacci Quart., 36 (1998), 3, pp. 216-221
  20. Berzsenyi, G., Sums of Products of Generalized Fibonacci Numbers, Fibonacci Quart, 13 (1975), Dec., pp. 343-344
  21. Campbell, C. M., Campbell, P. P., On the Fibonacci Length of Powers of Dihedral Groups, In:Howard, F. T., ed. Applications of Fibonacci Numbers, 9 (2004), Dordrecht: Kluwer Academic Publisher, pp. 69-85
  22. Campbell, C. M., et al., Fibonacci Length of Generating Pairs in Groups, In:Bergum, G. E., ed. Applications of Fibonacci Numbers, 3, Dordrecht: Kluwer Academic Publishers, Springer, New York, USA, (1990), pp. 27-35
  23. Chen, W. Y. C., Louck, J. D., The Combinatorial Power of the Companion Matrix, Linear Algebra Appl., 232 (1996), Jan., pp. 261-278
  24. Deveci, O., et al., On the k-Nacci Sequences in Finite Binary Polyhedral Groups, Algebra Colloq., 18 (2011), Spec. 1, pp. 945-954
  25. Deveci, O., et al., On the 2k-stepjordan-Fibonacci Sequence, Advances in Difference Equations, 2017 (2017), 1, pp. 1-9
  26. Deveci, O., et al., The Fibonacci-Circulant Sequences and their Applications, Iran. J. Sci. Technol. Trans. Sci., 41 ( (2017), 4, pp. 1033-1038
  27. Deveci, O., Shannon, A. G., The Quaternion-Pell Sequence, Commun. Algebra, 46 (2018), 12, pp. 5403-5409
  28. Doostie, H., Hashemi, M., Fibonacci Lengths Involving the Wall Number K(n), J. Appl. Math. Comput., 20 (2006), 1-2, pp. 171-180
  29. Falcon, S., Plaza, A., k-Fibonacci Sequences Modulo m, Chaos Solitons Fract., 41 (2009), 1, pp. 497-504
  30. Wilcox, H. J., Fibonacci Sequences of Period n in Groups, Fibonacci Quart., 24 (1986), 4, pp. 356-361

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence