ABSTRACT
In the ideal topological spaces (X, τ, I) and (Y, J, σ), we define (I, J)-irresolute function, weakly-(I, J)-irresolute, strongly-(I, J)-irresolute functions, semi-I-open sets and quasi-H-closed spaces modulo ideal I. We discuss properties of (I, J)-irresolute function mapping connected, closed, compact ideal spaces modulo I and semi-I-isolated points. (I, J)-Homeomorphisim on presemi-I-open sets and closure properties of quasi-H-closed spaces and semi-I-open subsets are explored in this paper.
KEYWORDS
PAPER SUBMITTED: 2022-08-24
PAPER REVISED: 2022-09-26
PAPER ACCEPTED: 2022-09-28
PUBLISHED ONLINE: 2023-01-29
- Kuratowski, K., Topology, Academic Press., New York, USA, 1966
- Vaidyanathaswamy, S., Set Topology, Chelsea, New York, USA, 1960
- Rancin, D. V., Compactness Modulo an Ideal, Soviet Mathematics Doklady Journal, 13 (1973), pp. 193-197
- Jankovic, D., et al., New Topologies from old via Ideals, American Mathematical Society, 97 (1994), 4, pp. 295-310
- Jankovic, D., et al., Compatible Extensions of Ideals, Bollettino dell'Unione Matematica Italiana, 7 (1992), 6B, pp. 453-465
- Abd El-Monsef, M. E., et al., On I-Open Sets and I Continuous Functions, Kyungpook Mathematical Journal, 32 (1992), 1, pp. 21- 30
- Keskin, A., et al., Idealization of Decomposition Theorem, Acta Mathematica Hungarica, 102 (2004), 4, pp. 269-277
- Hatir, E., et al., On Decomposition of Continuity via Idealization, Acta Mathematica Hungarica, 96 (2002), 4, pp. 341-349
- Acikgoz, A., et al., On α-I-Open Sets and Decomposition of Continuity, Acta Mathematica Hungarica, 102 (2004), 1, pp. 349-357
- Dontchev, J., On pre-I-open sets and a Decomposition of I-Continuity, Banyan Mathematical Journal, 2 (1996), 3, pp. 164-168
- Hatir, E., et al., On a New Decomposition of Continuity via Idealization, JP Journal of Geometry and Topology, 3 (2003), 1, pp. 53-64
- Ekici, E., et al., Extremally Disconnected Ideal Topological Spaces, Acta Mathematica Hungarica, 122 (2009), 1, pp. 81-90
- Renukadevi, V., On Subsets of Ideal Topological Spaces, CUBO A Mathematical Journal, 12 (2010), 2, pp. 43-52
- Newcomb, R. L., Topologies which are Compact Modulo an Ideal, Ph.D.Thesis, University Of California, At Santa Barbara, USA, 1967