ABSTRACT
In this paper, we define five parameters generalization of Fibonacci numbers that generalizes Fibonacci, Pell, Modified Pell, Jacobsthal, Narayana, Padovan, k-Fibonacci, k-Pell, Modified k-Pell, k-Jacobsthal numbers and Fibonacci p-numbers, distance Fibonacci numbers, (2, k)-distance Fibonacci numbers, generalized (k, r)-Fibonacci numbers in the distance sense by extending the definition of a distance in the recurrence relation with two parameters and adding three parameters in the definition of this distance, simultaneously. Tiling and combinatorial interpretations of generalized Fibonacci numbers are presented, and explicit formulas that allow us to calculate the nth number are given. Also generating functions and some identities for these numbers are obtained.
KEYWORDS
PAPER SUBMITTED: 2022-07-11
PAPER REVISED: 2022-08-30
PAPER ACCEPTED: 2022-10-05
PUBLISHED ONLINE: 2023-01-29
- Horadam A. F., A Generalized Fibonacci Sequence, American Mathematical Monthly, 68 (1961), 5, pp. 455-459
- Horadam, A. F., Jacobsthal and Pell Curves, The Fibonacci Quarterly, 26 (1988), 1, pp. 79-83
- Allouche, J. P., Johnson, J., Narayana's Cows and Delayed Morphisms, Proceedings, 3rd Computer Music Conference JIM96, France, 1996
- Shannon, A. G., et al., Properties of Cordonnier, Perrin and Van der Laan Numbers, International Journal of Mathematical Education in Science and Technology, 37 (2006), 7, pp. 825-831
- Falcon, S. A., Plaza, A., On the Fibonacci k-Numbers, Chaos, Solitons & Fractals, 32 (2007), 5, pp. 1615-1624
- El-Mikkawy, M., Sogabe, T., A New Family of k-Fibonacci Numbers, Applied Mathematics and Computation, 215 (2010), 12 pp. 4456-4461
- Tasyurdu, Y., et al., On the a New Family of k-Fibonacci Numbers, Erzincan University Journal of Science and Technology, 9 (2016), 1, pp. 95-101
- Koshy, T., Fibonacci and Lucas Numbers with Applications, Wiley, New York, USA, 2001
- Koshy, T., Pell and Pell-Lucas Numbers with Applications, Springer, New York, USA, 2014
- Panwar, Y. K., A Note on the Generalized k-Fibonacci Sequence, MTU Journal of Engineering and Natural Sciences, 2 (2021), 2, pp. 29-39
- Ramirez, J. S., Sirvent V. F., A Note on the k-Narayana Sequence, Annales Mathematicae et Informaticae, 45 (2015), Jan., pp. 91-105
- Tasyurdu, Y., Generalized (p,q)-Fibonacci-Like Sequences and Their Properties, Journal of Mathematics Research, 11 (2019), 6, pp. 43-52
- Catarino, P., On some Identities and Generating Functions for k-Pell Numbers, Int. J. Math. Anal., 7 (2013), 38, pp. 1877-1884
- Catarino, P., Vasco, P., Modified k-Pell Sequence: Some Identities and Ordinary Generating Function, Applied Mathematical Sciences, 7 (2013), 121, pp. 6031-6037
- Jhala, D., et al., On some Identities for k-Jacobsthal Numbers, Int. J. Math. Anal., 7 (2013), 12, pp. 551-556
- Stakhov, A. P., Introduction into Algorithmic Measurement Theory, Soviet Radio, Moskow, Russia 1977
- Kwasnik, M., Wloch, I., The Total Number of Generalized Stable Sets and Kernels of Graphs, Ars Combin., 55 (2000), Apr., pp. 139-146
- Bednarz, U., et al., Distance Fibonacci Numbers, Their Interpretations and Matrix Generators, Commentat. Math., 53 (2013), 1, pp. 35-46
- Włoch, I., et al., On a New Type of Distance Fibonacci Numbers, Discrete Applied Mathematics, 161 (2013), 16-17, pp. 2695-2701
- Deveci, O., Karaduman, E., On the Padovan p-numbers, Hacettepe Journal of Mathematics and Statistics, 46 (2017), 4, pp. 579-592
- Falcon, S., Generalized (k, r)-Fibonacci Numbers, Gen. Math. Notes, 25 (2014), 2, pp. 148-158
- Bednarz, N., On (k, p)-Fibonacci numbers, Mathematics, 9 (2021), 727
- Brigham, R. C., et al., A Tiling Scheme for the Fibonacci Numbers, J. Recreational Math, 28 (1996-97), 1, pp. 10-17
- Benjamin, A. T., Quinn, J. J., Proofs that Really Count: The Art of Combinatorial Proof., Mathematical Association of America, Washington D. C.,2003
- Tasyurdu, Y., Cengiz, B., A Tiling Approach to Fibonacci p-numbers, Journal of Universal Mathematics, 5 (2022), 2, pp. 177-184
- Soykan Y., On generalized Padovan Numbers, On-line first, 10.20944/preprints202110. 0101.v1, 2021
- Kilic, E., The Binet Formula, Sums and Representations of Generalized Fibonacci p-numbers, Eur. J. Combin., 29 (2008), 3, pp. 701-711
- Kuhapatanakul, K. The Fibonacci p-numbers and Pascal's Triangle, Cogent Mathematics, 3 (2016), 1, 1264176