International Scientific Journal

External Links


Many coking plants have adopted the process of preheating flue gas to apply medium and low temperature selective catalytic reduction (SCR) denitrification technology, which increases the NOx treatment cost, fuel consumption, and generates secondary pollutants. Based on the unique temperature distribution characteristics of the coke oven regenerator, this work proposes a method for synergizing SCR inside the regenerator to remove NOx. A 3-D numerical model of the synergy between heat storage and SCR reaction was constructed to study the influence of mixing parameters (atomization angle, injection velocity, nozzles number) on the NO reduction and NH3 distribution. The validity of the model was verified. The results showed that the uneven distribution of NH3 near the catalytic layer and the small SCR coating area limited the NO reduction efficiency. Increasing the number of nozzles was more beneficial than the injection velocity and atomization angle for improving the NH3 distribution uniformity and NO reduction efficiency, achieving a maximum NO reduction efficiency of 37.1% (reduced to 251.6 mg/m3). Further research found that the NO reduction capacity of the co-operative SCR model cannot exceed 36% without changing the thermal storage brick structure. When the inlet NO concentration is less than 235 mg/m3, the reaction model ensures that the outlet NO concentration meets the national emission standards.
PAPER REVISED: 2022-03-03
PAPER ACCEPTED: 2022-03-04
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 6, PAGES [4571 - 4582]
  1. Diez, M.A.; Alvarez, R.; Barriocanal, C. Coal for metallurgical coke production: Predictions of coke quality and future requirements for cokemaking. Int. J. Coal. Geol. 50 (2002), pp. 389-412.
  2. Du, X.; Chen, X.; Bin, Y. Study on denitrification catalyst for coke oven flue gas. Fuel Chem. Proced. 2 (2018), pp. 43-47.
  3. Jin, K.; Feng, Y.; Zhang, X.; Wang, M.; Yang, J.; Ma, X. Simulation of transport phenomena in coke oven with staging combustion. Appl. Therm. Eng. 58 (2013), pp. 354-362, doi:10.1016/j.applthermaleng.2013.04.056.
  4. Wu, H.; Cai, J.; Ren, Q.; Shi, C.; Zhao, A.; Lyu, Q. A thermal and chemical fuel pretreatment process for NOx reduction from cement kiln. Fuel Process. Technol. 210 (2020), pp. 106556, doi:10.1016/j.fuproc.2020.106556.
  5. Caldeira-Pires, A.; Correia, D.P.; Maia, P.; Lacava, P.; Heitor, M.V. Influence of burner-port geometry in hydrocarbon oxidation and NOx formation mechanisms in methane/air flames. Fuel. 81 (2001), pp. 771-783.
  6. Gamrat, S.; Poraj, J.; Bodys, J.; Smolka, J.; Adamczyk, W. Influence of external flue gas recirculation on gas combustion in a coke oven heating system. Fuel Process. Technol. 152 (2016), pp. 430-437, doi:10.1016/j.fuproc.2016.07.010.
  7. Weiss, C.; Rieger, J.; Rummer, B. Formation and Control of Nitrogen Oxide in the Heating System of a Coke Oven. Environ. Eng. Sci. 29 (2012), pp. 555-562, doi:10.1089/ees.2010.0464.
  8. Liu, K.; He, H.; Chu, B. Microkinetic study of NO oxidation, standard and fast NH3-SCR on CeWO at low temperatures. Chem. Eng. J. 423 (2021 ), pp. 130128, doi:10.1016/j.cej.2021.130128.
  9. Muzio, L.J.; Quartucy, G.C.; Cichanowiczy, J.E. Overview and status of post-combustion NOx control: SNCR, SCR and hybrid technologies. Int. J. Environ. Pollut. 17 (2002), pp. 4-30.
  10. Liu, X.; Tan, H.; Wang, Y.; Yang, F.; Mikulcic, H.; Vujanovic, M.; Duic, N. Low NOx combustion and SCR flow field optimization in a low volatile coal fired boiler. J. Environ. Manag. 220 (2018), pp. 30-35, doi:10.1016/j.jenvman.2018.05.009.
  11. Zhang, C.; Sun, C.; Wu, M.; Lu, K. Optimisation design of SCR mixer for improving deposit performance at low temperatures. Fuel 2019, 237, 465-474, doi:10.1016/j.fuel.2018.10.025.
  12. Liu, H.; Guo, T.; Yang, Y.; Lu, G. Optimization and Numerical Simulation of the Flow Characteristics in SCR System. Energy Procedia. 17 (2012), pp. 801-812, doi:10.1016/j.egypro.2012.02.173.
  13. Gao, Y.; Liu, Q.; Bian, L. Numerical Simulation and Optimization of Flow Field in the SCR Denitrification System on a 600 MW Capacity Units. Energy Procedia. 14 (2012), pp. 370-375, doi:10.1016/j.egypro.2011.12.944.
  14. Mehdi, G.; Zhou, S.; Zhu, Y.; Shah, A.; Chand, K. Numerical Investigation of SCR Mixer Design Optimization for Improved Performance. Processes. 7 (2019), pp. 168, doi:10.3390/pr7030168.
  15. Ye, J.; Lv, J.; Tan, D.; Ai, Z.; Feng, Z. Numerical Analysis on Enhancing Spray Performance of SCR Mixer Device and Heat Transfer Performance Based on Field Synergy Principle. Processes 9 (2021), pp. 786, doi:10.3390/pr9050786.
  16. Prabhu S. S.; Natesan, K.; Shivappa Nayak, N. Effect of UWS spray angle and positioning of injector on ammonia concentration in Urea-SCR system. Mater. Today Proc. 46 (2021), pp. 8051-8055, doi:10.1016/j.matpr.2021.03.026.
  17. Wardana, M.; Hyun, J.; Lim, O. A study of urea injection timing to predict the NOx conversion in SCR systems. Energy Procedia. 158 (2019), pp. 1942-1948.
  18. Xin, Q.; Hua, Z.; Fu, Y.; Yang, Y.; Liu, S.; Song, H.; Yu, X.; Xiao, L.; Zheng, C.; Gao, X. Investigation on optimal active layer thickness and pore size in dual-layer NH3-SCR monolith for low SO2 oxidation by numerical simulation. Fuel. 279 (2020), pp. 118420, doi:10.1016/j.fuel.2020.118420.
  19. Zeng, H.; Yuan, J.; Wang, J. Numerical and experimental iInvestigations on reducing particle accumulation for SCR-deNOx facilities. Appl. Sci. 9 (2019), pp. 4158, doi:10.3390/app9194158.
  20. Guo, M.; Liu, Q.; Liu, C.; Wang, X.; Bi, Y.; Fan, B.; Ma, D.; Liang, X.; Li, Z. Rational design of novel CrZrOx catalysts for efficient low temperature SCR of NO. Chem. Eng. J. 413 (2021), pp. 127554, doi:10.1016/j.cej.2020.127554.
  21. Luo, Z.; Ji, P.; Gao, X.; Du, X.; Cen, K. Relationship between the molecular structure of V2O5/TiO2 catalysts and the reactivity of SO2 oxidation. Catal. Sci. Technol. 6 (2016), pp. 1187-1194.
  22. Fang, X.; Liu, Y.; Chen, L.; Cheng, Y. Influence of surface active groups on SO2 resistance of birnessite for low-temperature NH3-SCR. Chem. Eng. J. 399 (2020), pp. 125798, doi:10.1016/j.cej.2020.125798.
  23. Guo, K.; Ji, J.; Song, W.; Sun, J.; Tang, C.; Dong, L. Conquering ammonium bisulfate poison over low-temperature NH3-SCR catalysts: A critical review. Appl. Catal. B Environ. 297 (2021), pp. 120388, doi:10.1016/j.apcatb.2021.120388.
  24. Kwon, D.W.; Kim, D.H.; Lee, S.; Kim, J.; Ha, H.P. A dual catalytic strategy by the nature of the functionalization effect as well as active species on vanadium-based catalyst for enhanced low temperature SCR. Appl. Catal. B Environ. 289 (2021), pp. 120032, doi:10.1016/j.apcatb.2021.120032.
  25. Yu, J.; Li, C.; Guo, F.; Gao, S.; Zhang, Z.-g.; Matsuoka, K.; Xu, G. The pilot demonstration of a honeycomb catalyst for the DeNOx of low-temperature flue gas from an industrial coking plant. Fuel. 219 (2018), pp. 37-49, doi:10.1016/j.fuel.2018.01.048.
  26. Gao, F.; Yan, H.; Tang, X.; Yi, H.; Zhao, S.; Yu, Q.; Ni, S. Simultaneous removal of gaseous CO and elemental mercury over Cu-Co modified activated coke at low temperature. J. Environ. Sci. 101 (2021), pp.36-48, doi:10.1016/j.jes.2020.05.029.
  27. Zhao, Y.; Feng, J.; Huang, S.; Hu, S. Analysis and evaluation of the influence of heat storage material on coke oven flue gas exothermic process. Therm. Sci. 25 (2021), pp. 1095-1108, doi:10.2298/tsci190715446z.
  28. Lopes G C , Rosa L M , Mori M , et al. CFD Study of Industrial FCC Risers: The Effect of Outlet Configurations on Hydrodynamics and Reactions
  29. Zhao, Y, at all. Thermal process and NO emission reduction characteristics of a new-type coke oven regenerator coupled with SNCR process. Fuel. 305 (2021), pp. 121510.
  30. Zhao, Y, at all. Numerical simulation of NO emission reduction in coke oven regenerator with synergistic SNCR/SCR process. E3S Web of Conferences. 267 (2021), pp. 02053.
  31. Stberg, M.; Dam-Johansen, K.; Johnsson, J.E. Influence of mixing on the SNCR process. Chem. Eng. Sci. 52 (1997), pp. 2511-2525.
  32. Koebel, M.; Elsener, M. Selective catalytic reduction of NO over commercial DeNOx-catalysts: Experimental determination of kinetic and thermodynamic parameters. Chem. Eng. Sci. 53 (1998), pp. 657-669, doi:10.1016/S0009-2509(97)00342-4.
  33. "Coking Design Reference Materials" Compilation Group. Coking Design Reference Materials. Part 1; Metallurgical Industry Press (in Chinese): 1980.
  34. Zheng, C.; Xiao, L.; Qu, R.; Liu, S.; Xin, Q.; Ji, P.; Song, H.; Wu, W.; Gao, X. Numerical simulation of selective catalytic reduction of NO and SO2 oxidation in monolith catalyst. Chem. Eng. Sci. 361 (2019), pp.874-884, doi:10.1016/j.cej.2018.12.150.
  35. Tan, L.; Feng, P.; Yang, S.; Guo, Y.; Liu, S.; Li, Z. CFD studies on effects of SCR mixers on the performance of urea conversion and mixing of the reducing agent. Chem. Eng. Process. Process Intensif. 123 (2018), pp. 82-88, doi:10.1016/j.cep.2017.11.003.
  36. Bai, W, at all. A comprehensive review on oxygen transport membranes: Development history, current status, and future directions. Int J Hydrogen Energy 46 (2021), pp. 36257-36290.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence