THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

FORMULAS FOR DEATH AND LIFE: CHEMICAL COMPOSITION AND BIOTHERMODYNAMIC PROPERTIES OF MONKEYPOX (MPV, MPXV, HMPXV) AND VACCINIA (VACV) VIRUSES

ABSTRACT
Today, the World Health Organization has declared a global health emergency, caused by the Monkeypox outbreak. In the monthly analysis for June, 3500 cases have been reported in 50 countries around the world. In the analysis for July, more than 30000 cases have been reported in 75 countries. Thus, in the circumstances of the continuing COVID-19 pandemic, the appearance and dynamics of spreading of Monkeypox is alarming. In this paper, for the first time, elemental composition of Poxvirus, Monkeypox virus, and Vaccinia virus have been reported. Additionally, thermodynamic properties have been reported for nucleic acids, nucleocapsids, and entire virus particles. The similarity in chemical composition and thermodynamic properties of the analyzed viruses has been used to explain the crossed immunity to Poxviruses. Finally, binding thermodynamic properties have been reported for the Vaccinia virus.
KEYWORDS
PAPER SUBMITTED: 2022-05-24
PAPER REVISED: 2022-08-02
PAPER ACCEPTED: 2022-08-15
PUBLISHED ONLINE: 2022-09-10
DOI REFERENCE: https://doi.org/10.2298/TSCI220524142P
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 6, PAGES [4855 - 4868]
REFERENCES
  1. WHO (2022a). Monkeypox outbreak 2022 - Global
  2. CDC (2022). 2022 Monkeypox Outbreak Global Map
  3. WHO (2022b). Multi-country monkeypox outbreak: situation update 27 June 2022
  4. Riedel, S., Morse, S., Mietzner, T. & Miller, S. Jawetz, Melnick & Adelbergs Medical Microbiology, 28th ed., McGraw-Hill Education, New York, USA, 2019. ISBN: 978-1260012026
  5. Wimmer E. The test-tube synthesis of a chemical called poliovirus. The simple synthesis of a virus has far-reaching societal implications. EMBO reports, 7 (2006), Spec No, S3-S9. doi.org/10.1038/sj.embor.7400728
  6. Degueldre C. Single virus inductively coupled plasma mass spectroscopy analysis: A comprehensive study. Talanta, 228 (2021), 122211. doi.org/10.1016/j.talanta.2021.122211
  7. Popovic, M. and Popovic, M., Strain Wars: Competitive interactions between SARS-CoV-2 strains are explained by Gibbs energy of antigen-receptor binding. Microbial Risk Analysis, 21 (2022), 100202. doi.org/10.1016/j.mran.2022.100202
  8. Popovic, M., Strain wars 2: Binding constants, enthalpies, entropies, Gibbs energies and rates of binding of SARS-CoV-2 variants. Virology, 570 (2022), 35-44. doi.org/10.1016/j.virol.2022.03.008
  9. Popovic, M., Strain wars 3: Differences in infectivity and pathogenicity between Delta and Omicron strains of SARS-CoV-2 can be explained by thermodynamic and kinetic parameters of binding and growth. Microbial risk analysis, (2022), 100217. Advance online publication. doi.org/10.1016/j.mran.2022.100217
  10. Popovic, M., Atom counting method for determining elemental composition of viruses and its applications in biothermodynamics and environmental science. Computational biology and chemistry, 96 (2022), 107621. doi.org/10.1016/j.compbiolchem.2022.107621
  11. Gale, P., Using thermodynamic equilibrium models to predict the effect of antiviral agents on infectivity: Theoretical application to SARS-CoV-2 and other viruses. Microbial risk analysis, 21 (2021), 100198. Advance online publication. doi.org/10.1016/j.mran.2021.100198
  12. Gale, P., How virus size and attachment parameters affect the temperature sensitivity of virus binding to host cells: Predictions of a thermodynamic model for arboviruses and HIV. Microbial risk analysis, 15 (2020), 100104. doi.org/10.1016/j.mran.2020.100104
  13. Gale, P., Towards a thermodynamic mechanistic model for the effect of temperature on arthropod vector competence for transmission of arboviruses. Microbial risk analysis, 12 (2019), 27-43. doi.org/10.1016/j.mran.2019.03.001
  14. Gale, P., Using thermodynamic parameters to calibrate a mechanistic dose-response for infection of a host by a virus. Microbial risk analysis, 8 (2018), 1-13. doi.org/10.1016/j.mran.2018.01.002
  15. Popovic, M., & Minceva, M., A thermodynamic insight into viral infections: do viruses in a lytic cycle hijack cell metabolism due to their low Gibbs energy?. Heliyon, 6 (2020), 5, e03933. doi.org/10.1016/j.heliyon.2020.e03933
  16. Popovic, M., & Minceva, M., Thermodynamic insight into viral infections 2: empirical formulas, molecular compositions and thermodynamic properties of SARS, MERS and SARS-CoV-2 (COVID-19) viruses. Heliyon, 6 (2020), 9, e04943. doi.org/10.1016/j.heliyon.2020.e04943
  17. Popovic, M., & Minceva, M., Coinfection and Interference Phenomena Are the Results of Multiple Thermodynamic Competitive Interactions. Microorganisms, 9 (2021), 10, 2060. doi.org/10.3390/microorganisms9102060
  18. Head, R. J., Lumbers, E. R., Jarrott, B., Tretter, F., Smith, G., Pringle, K. G., Islam, S., & Martin, J. H., Systems analysis shows that thermodynamic physiological and pharmacological fundamentals drive COVID-19 and response to treatment. Pharmacology research & perspectives, 10 (2022), 1, e00922. doi.org/10.1002/prp2.922
  19. Von Stockar, U., Live cells as open non-equilibrium systems, in: Biothermodynamics: The Role of Thermodynamics in Biochemical Engineering (Ed. U. von Stockar), EPFL Press, Lausanne, Switzerland, 2013, pp. 475-534. doi.org/10.1201/b15428
  20. Von Stockar, U., Biothermodynamics of Live Cells: Energy Dissipation and Heat Generation in Cellular Cultures, in: Biothermodynamics: The Role of Thermodynamics in Biochemical Engineering (Ed. U. von Stockar), EPFL Press, Lausanne, Switzerland, 2013, pp. 475-534. doi.org/10.1201/b15428
  21. von Stockar, U., & Liu, J., Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochimica et biophysica acta, 1412 (1999), 3, 191-211. doi.org/10.1016/s0005-2728(99)00065-1
  22. Hellingwerf, K.J., Lolkema, J.S., Otto, R., Neijssel, O.M., Stouthamer, A.H., Harder, W., van Dam, K. and Westerhoff, H.V., Energetics of microbial growth: an analysis of the relationship between growth and its mechanistic basis by mosaic non‐equilibrium thermodynamics. FEMS Microbiology Letters, 15 (1982), 1, 7-17. doi.org/10.1111/j.1574-6968.1982.tb00028.x
  23. Westerhoff, H.V., Lolkema, J.S., Otto, R. and Hellingwerf, K.J., Thermodynamics of growth. Non-equilibrium thermodynamics of bacterial growth: the phenomenological and the Mosaic approach. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, 683 (1982), 3-4, 181-220. doi.org/10.1016/0304-4173(82)90001-5
  24. Popovic, M., Thermodynamic properties of microorganisms: determination and analysis of enthalpy, entropy, and Gibbs free energy of biomass, cells and colonies of 32 microorganism species. Heliyon, 5 (2019), 6, e01950. doi.org/10.1016/j.heliyon.2019.e01950
  25. Popovic, M. and Minceva, M., Thermodynamic properties of human tissues. Thermal Science, 24 (2020), 6B, 4115-4133. doi.org/10.2298/TSCI200109151P
  26. Popović, M. E., & Minceva, M., Comment on:"A critical review on heat and mass transfer modelling of viral infection and virion evolution: the case of SARS-COV2. Thermal Science, 25 (2021), 6 Part B, 4823-4825. doi.org/10.2298/TSCI211021329P
  27. Trancossi, M., Pascoa, J. C., & Sharma, S., A critical review on heat and mass transfer modelling of viral infection and virion evolution: the case of SARS-COV2. Thermal Science, 25 (2021), 4A, 2831-2843. doi.org/10.2298/TSCI210614215T
  28. Lucia, U., Grisolia, G., & Deisboeck, T. S., Thermodynamics and SARS-CoV-2: neurological effects in post-Covid 19 syndrome. Atti della Accademia Peloritana dei Pericolanti, 99 (2021), 2, A3. doi.org/10.1478/AAPP.992A3
  29. Lucia, U., Grisolia, G., & Deisboeck, T. S., Seebeck-like effect in SARS-CoV-2 bio-thermodynamics. Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 98 (2020), 2, 6. doi.org/10.1478/AAPP.982A6
  30. Lucia, U., Deisboeck, T. S., & Grisolia, G., Entropy-based pandemics forecasting. Frontiers in Physics, 8 (2020), 274. doi.org/10.3389/fphy.2020.00274
  31. Şimşek, B., Özilgen, M., & Utku, F. Ş., How much energy is stored in SARS‐CoV‐2 and its structural elements?. Energy Storage, (2021), e298. doi.org/10.1002/est2.298
  32. Popovic, M., Differences in infectivity and pathogenicity between Delta and Omicron strains of SARS-CoV-2 can be explained by Gibbs energies of binding and growth, Proceedings, 21st Conference of the International Society for Biological Calorimetry (ISBC 2022), Vilnius, Lithuania, 2022, p. 20. ISBN: 978-609-96039-2-6
  33. National Center for Biotechnology Information (2022). NCBI database
  34. Knight, C.A., Chemistry of Viruses, Springer, Berlin, Germany, 1975. ISBN: 978-3-642-85899-4
  35. Lai, C. F., Gong, S. C., & Esteban, M., The 32-kilodalton envelope protein of vaccinia virus synthesized in Escherichia coli binds with specificity to cell surfaces. Journal of virology, 65 (1991), 1, 499-504. doi.org/10.1128/JVI.65.1.499-504.1991
  36. Battley, E.H., The development of direct and indirect methods for the study of the thermodynamics of microbial growth. Thermochimica Acta, 309 (1998), 1-2, 17-37. doi.org/10.1016/S0040-6031(97)00357-2
  37. Battley, E. H., On the enthalpy of formation of Escherichia coli K-12 cells. Biotechnology and bioengineering, 39 (1992), 1, 5-12. doi.org/10.1002/bit.260390103
  38. Patel, S.A. and Erickson, L.E. Estimation of heats of combustion of biomass from elemental analysis using available electron concepts. Biotechnology and Bioengineering, 23 (1981), 2051-2067. doi.org/10.1002/bit.260230910
  39. Atkins, P.W., & de Paula, J., Physical Chemistry: Thermodynamics, Structure, and Change, 10th Edition. W. H. Freeman and Company, New York, USA, 2014.
  40. Atkins, P. W., & de Paula, J., Physical Chemistry for the Life Sciences (2nd edition), W. H. Freeman and Company, New York, USA, 2011.
  41. Battley, E.H., An empirical method for estimating the entropy of formation and the absolute entropy of dried microbial biomass for use in studies on the thermodynamics of microbial growth. Thermochimica Acta, 326 (1999), 1-2, 7-15. doi.org/10.1016/S0040-6031(98)00584-X
  42. Battley, E. H., A theoretical study of the thermodynamics of microbial growth using Saccharomyces cerevisiae and a different free energy equation. The Quarterly review of biology, 88 (2013), 2, 69-96. doi.org/10.1086/670529
  43. Wang, L., Wang, X., Jin, X., Xu, J., Zhang, H., Yu, J., Sun, Q., Gao, C., & Wang, L. Analysis of algae growth mechanism and water bloom prediction under the effect of multi-affecting factor. Saudi journal of biological sciences, 24 (2017), 3, 556-562. doi.org/10.1016/j.sjbs.2017.01.026
  44. Popovic, M., & Minceva, M., Standard Thermodynamic Properties, Biosynthesis Rates, and the Driving Force of Growth of Five Agricultural Plants. Frontiers in plant science, 12 (2021), 671868. doi.org/10.3389/fpls.2021.671868
  45. Du, X., Li, Y., Xia, Y. L., Ai, S. M., Liang, J., Sang, P., Ji, X. L., & Liu, S. Q. Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. International journal of molecular sciences, 17 (2016), 2, 144. doi.org/10.3390/ijms17020144
  46. Alakunle, E. F., & Okeke, M. I., Monkeypox virus: a neglected zoonotic pathogen spreads globally. Nature reviews Microbiology, 20 (2022), 507-508. doi.org/10.1038/s41579-022-00776-z
  47. Di Giulio, D. B., & Eckburg, P. B., Human monkeypox: an emerging zoonosis. The Lancet. Infectious diseases, 4 (2004), 1, 15-25. doi.org/10.1016/s1473-3099(03)00856-9
  48. Johnson, L.; Gupta, A. K.; Ghafoor, A.; Akin, D.; Bashir, R. Characterization of vaccinia virus particles using microscale silicon cantilever resonators and atomic force microscopy. Sensors and Actuators B Chemical, 115 (2006), 1, 189-197. doi.org/10.1016/j.snb.2005.08.047
  49. Demirel, Y. Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems, 3rd ed. Elsevier, Amsterdam, Netherlands, 2014. ISBN: 9780444595812
  50. Molla, A., Paul, A. V., & Wimmer, E., Cell-free, de novo synthesis of poliovirus. Science, 254 (1991), 5038, 1647-1651. doi.org/10.1126/science.1661029
  51. European Medicines Agency (2013). Assessment report: IMVANEX, Common name: Modified Vaccinia Ankara virus, Procedure No. EMEA/H/C/002596.
  52. Hansen, L. D., Popovic, M., Tolley, H. D., & Woodfield, B. F., Laws of evolution parallel the laws of thermodynamics. The Journal of Chemical Thermodynamics, 124 (2018), 141-148. doi.org/10.1016/j.jct.2018.05.005

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence