THERMAL SCIENCE

International Scientific Journal

NON-SIMILARITY METHOD FOR HEAT AND MASS TRANSFER OF MHD RADIATIVE FLOW OVER EXPONENTIALLY STRETCHING SHEET

ABSTRACT
In this paper a modification of existing mathematical model of MHD radiative incompressible fluid-flow over exponentially stretching sheet is given by accumulating equation of mass transfer under an influence of chemical reaction. Using local non-similarity variables method, governing equations for heat and mass transfer of viscous fluid-flow are efficiently remodeled into the system of dimensionless PDE, and later on the obtained system of dimensionless PDE is tack¬led numerically using MATLAB built in solver bvp4c. Graphs of temperature, velocity and concentration profiles are explained through variation of different values of physical parameters. Significant effects of several parameters, for example radiation and magnetic parameters, Eckert and Prandtl numbers on local skin-friction coefficient, local Nusselt and Sherwood numbers are computed in tabular form.
KEYWORDS
PAPER SUBMITTED: 2021-05-05
PAPER REVISED: 2021-07-18
PAPER ACCEPTED: 2021-09-09
PUBLISHED ONLINE: 2021-11-06
DOI REFERENCE: https://doi.org/10.2298/TSCI210505309M
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 5, PAGES [3703 - 3714]
REFERENCES
  1. L. J. Crane, Flow past a stretching plate, Zeitschrift für angewandte Mathematik und Physik, vol. 21, (1970) pp.645-655.
  2. P. Carragher and L. J. Crane, Heat transfer on a continuous stretching sheet, Zeitschrift für Angewandte Mathematik und Mechanik, vol. 62, (1982), pp. 564-573.
  3. Sakiadis, B.C. Boundary-Layer Behavior on Continuous Solid Surfaces, I. Boundary-Layer Equations for Two-Dimensional and Axisymmetric FlowAIChE J, (1961), 7, 26-28
  4. Gupta, P.S. and Gupta, A.S. Heat and Mass Transfer on a Stretching Sheet with Suction or Blowing, Can. J. Chem, 55, (1977), 744-746
  5. Carragher, P. and Crane, L.J. Heat Transfer on a Continuous Stretching SheetZeitschrift für Angewandte Mathematik und Mechanik, 62, (1982), 564-565
  6. Grubka, L.J. and Bobba, K.M. Heat Transfer Characteristics of a Continuous, Stretching Surface with Variable Temperature Heat Transfer ENG., 107, (1985), 248-250.
  7. Chen, C.K. and Char, M.I. Heat Transfer of a Continuous, Stretching Surface withSuction or Blowing J MATH ANAL APPL, 135, (1988), 568-580.
  8. Ali, M.E. Heat Transfer Characteristics of a Continuous Stretching Surface Heat Mass Transf, 29, (1994), 227- 234.
  9. Andersson, H.I. Slip Flow past a Stretching Surface ActaMechanica, 158, (2002), 121-125,
  10. Ariel, P.D., Hayat, T. and Asghar, S. The Flow of an Elastico-Viscous Fluid past a Stretching Sheet with Partial Slip ActaMechanica, 187,(2006), 29-35
  11. Ishak, A., Nazar, R. and Pop, I. Mixed Convection Boundary Layers in the Stagnation-Point Flow toward a Stretching Vertical Sheet Meccanica, 41, (2006), 509-518.
  12. Jat, R.N. and Chaudhary, S. Magneto hydrodynamic Boundary Layer Flow Near the Stagnation Point of a Stretching Sheet Il Nuovo Cimento della Società Italiana di Fisica B: General Physics, 123, (2008), 555-566.
  13. Jat, R.N. and Chaudhary, S. MHD Flow and Heat Transfer over a Stretching Sheet APPL. MATH.Sci., 3, (2009), 1285-1294.
  14. Wang, C.Y. Analysis of Viscous Flow Due to a Stretching Sheet with Surface Slip and Suction Nonlinear Anal. Real World Appl, 10, (2009), 375-380
  15. Nadeem, S., Hussain, A. and Khan, M. HAM Solutions for Boundary Layer Flow in the Region of the Stagnation Point towards a Stretching Sheet CommunNonlinear Sci Numer Simul, 15, (2010), 475-481.
  16. Elbashbeshy, E.M.A. Radiation Effect on Heat Transfer over a Stretching Surface Can.J. Phys, 78, (2000), 1107-1112.
  17. Sajid, M. and Hayat, T. Influence of Thermal Radiation on the Boundary Layer Flow Due to an Exponentially Stretching Sheet Int.Commun. Heat Mass Transf.,35, (2008), 347-356.
  18. Bidin, B. and Nazar, R. Numerical Solution of the Boundary Layer Flow over an Exponentially Stretching Sheet with Thermal Radiation Eur. J. Res. 33, (2009), 710-717.
  19. Jat, R.N. and Chaudhary, S. Radiation Effects on the MHD Flow Near the Stagnation Point of a Stretching Sheet Zeitschrift für angewandte Mathematik und Physik, 61, (2010), 1151-1154.
  20. Nadeem, S., Zaheer, S. and Fang, T. Effects of Thermal Radiation on the Boundary Layer Flow of a Jeffrey Fluid over an Exponentially Stretching Surface Numer. Algorithms, 57, (2011), 187-205.
  21. Mukhopadhyay, S. and Gorla, R.S.R. Effects of Partial Slip on Boundary Layer Flow past a Permeable Exponential Stretching Sheet in Presence of Thermal Radiation Heat Mass Transf, 48, (2012), 1773-1781.
  22. Santosh Chaudhary, Sawai Singh, Susheela Chaudhary. Thermal Radiation Effects on MHD Boundary Layer Flow over an Exponentially Stretching Surface Appl. Math, 6, (2015), 295-303.
  23. Tagawa. Numerical Analysis of Magnetohydrodynamic Flows Fluids, 5(1),(2020), 23.
  24. Miura, H. Extended Magnetohydrodynamic Simulations of Decaying, Homogeneous, Approximately-Isotropic and Incompressible Turbulence. Fluids, 4, (2019), 46.
  25. Pal D. Hall current and MHD effects on heat transfer over an unsteady stretching permeable surface with thermal radiation. Comput. Math. App,66, (2013), 1161-80.
  26. Rashidi M M, Ali M, Freidoonimehr N, Rostami B, Hossain MA. Mixed convection heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation. Adv. Mech. Eng, (2014), 735939.
  27. Hayat T, Qayyum S, Imtiaz M, Alsaedi A. Comparative study of silver andcopper water nanofluids with mixed convection and nonlinear thermal radiation Int. J. Heat Mass Transfer,102, (2016), 723-32.
  28. Tarek G Eman Radiative flow and heat transfer of a fluid along an expandable-stretching horizontal cylinder J Egypt Math Soc 27(1), (2019),2
  29. Sparrow E.N, Yu. H. S Local Non-Similarity Thermal Boundary-Layer Solutions Journal of Heat Transfer, 93(4) (1971), 328-334

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence