ABSTRACT
In the present study, the effects of the surface morphology and surface hydrophobicity on droplet dynamics and condensation efficiency are investigated using the lattice Boltzmann method. Different surface morphologies may have different condensation heat transfer efficiencies, resulting in diverse condensation rates under the same conditions. The obtained results show that among the studied morphologies, the highest condensation rate can be achieved for conical micro-structures followed by the triangle micro-structure, and the columnar micro-structure has the lowest condensation rate. Moreover, it is found that when the surface micro-structure spacing is smaller and the surface micro-structure is denser, the condensation heat transfer between the surface structure and water vapor facilitates, thereby increasing the condensation efficiency of droplets. Furthermore, the condensation process of droplets is associated with the surface hydrophobicity. The more hydrophobic the surface, the more difficult the condensation heat transfer and the longer the required time for droplet nucleation. Meanwhile, a more hydrophobic surface means that it is harder for droplets to gather and merge, and the corresponding droplet condensation rate is also lower.
KEYWORDS
PAPER SUBMITTED: 2021-05-06
PAPER REVISED: 1970-01-01
PAPER ACCEPTED: 2021-07-17
PUBLISHED ONLINE: 2021-10-10
THERMAL SCIENCE YEAR
2022, VOLUME
26, ISSUE
Issue 4, PAGES [3505 - 3515]
- Khawaji, A.D., et al., Advances in Seawater Desalination Technologies, Desalination, 221. (2008), 3, pp. 47-69
- Boreyko, J.B., et al., Vapor Chambers with Jumping-drop Liquid return from Superhydrophobic Condensers, International Journal of Heat & Mass Transfer, 61. (2013), 6, pp. 409-418
- Rose, J.W., Dropwise Condensation Theory and Experiment: A review, Proc.imeche Part A2 J.power & Energy, 216. (2005), 2, pp. 115-128
- Zhang, K., et al., Ratio Dependence of Contact Angle for Droplet Wetting on Chemically Heterogeneous Substrates, Colloids & Surfaces A Physicochemical & Engineering Aspects, 539. (2017), 3,pp. 237-242
- Pan, B., et al., Wetting Dynamics of Nanoliter Water Droplets in Nanoporous Media, Journal of Colloid and Interface Science, 589. (2020)
- Jung, Y.C., et al., Wetting Behaviour during Evaporation and Condensation of Water Microdroplets on Superhydrophobic Patterned Surfaces, Journal of Microscopy, 229. (2010), 1, pp. 127-140
- Cheng, J., et al., Condensation Heat Transfer on Two-Tier Superhydrophobic Surfaces, Applied Physics Letters, 101. (2012), 13, p. 173108
- Miljkovic, N., et al., Jumping-droplet Electrostatic Energy Harvesting, Applied Physics Letters, 105. (2014), 1, p. 175
- Wen, R., et al., Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation, Acs Applied Materials & Interfaces. (2017), p. 44911
- Xie, J., et al., Dropwise Condensation on Superhydrophobic Nanostructure Surface, Part I: Long-term Operation and Nanostructure Failure, International Journal of Heat and Mass Transfer, 129. (2018), 6, pp. 86-95
- Chen, X., et al., Characterization of Coalescence-Induced Droplet Jumping Height on HierarchicalSuperhydrophobic Surfaces, ACS Omega, 2. (2017), 6, pp. 2883-2890
- Sazhin, S.S., et al., Transient Heating of An Evaporating Droplet, International Journal of Heat & Mass Transfer, 53. (2010), 14, pp. 2826-2836
- Alam, M.S., et al., Comparative Molecular Dynamics Simulations of Homogeneous Condensation of Refrigerants, International Journal of Thermal Sciences, 141. (2019), 5, pp. 187-198
- Raabe, D., Overview of the Lattice Boltzmann Method for Nano and Microscale Fluid Dynamics in Materials Science and Engineering, Modelling Simul.mater.sci.eng, 12. (2004), 3, pp. 11-15
- Varnik, F., et al., Stability and Dynamics of Droplets on Patterned Substrates: Insights from Experiments and Lattice Boltzmann Simulations, Journal of Physic: Condensed Matter, 23. (2011), 18, p. 184112
- Rui, W., et al., Bio‐Inspired Superhydrophobic Closely Packed Aligned Nanoneedle Architectures for Enhancing Condensation Heat Transfer, Advanced Functional Materials, 28. (2018), 49
- Checco, A., et al., Robust Superhydrophobicity in Large-area Nanostructured Surfaces Defined by Block-copolymer self Assembly, Advanced Materials, 26. (2014), 6, pp. 886-891
- Peng, B., et al., Analysis of Droplet Jumping Phenomenon with Lattice Boltzmann Simulation of Droplet Coalescence, Applied Physics Letters, 102. (2013), 15, pp. 1776-1785
- Shi, Y., et al., Investigation of Coalesced Droplet Vertical Jumping and Horizontal moving on Textured Surface using the Lattice Boltzmann Method, Computers and Mathematics with Applications, 75. (2017), 4, pp. 1213-1225
- Zhang, Q., et al., Lattice Boltzmann Modeling of Droplet Condensation on Superhydrophobic Nanoarrays, Langmuir, 30. (2014), 42, pp. 12559-12569
- Yu, J., et al., Effects of Geometrical Characteristics of Surface Roughness on Droplet Wetting, The Journal of Chemical Physics, 127. (2007), 23, pp. 234704-234704
- Bo, Z., et al., Spontaneous Wenzel to Cassie dewetting transition on structured surfaces, Physical Review Fluids, 1. (2016), 7
- Li, M., et al., Study on Nucleation Position and Wetting State for Dropwise Condensation on Rough Structures with Different Wettability using Multiphase Lattice Boltzmann Method, International Journal of Heat and Mass Transfer, 131. (2019), 5, pp. 96-100
- Shan, X., et al., Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components, Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 47. (1993), 3, pp. 1815-1819
- Liang, G., et al., Study on Droplet Nucleation Position and Jumping on Structured Hydrophobic Surface using the Lattice Boltzmann Method, Thermal Science. (2021), 4, p. 149
- Mazloomi, A., et al., Gravity-driven thin Liquid Films over Topographical Substrates, European Physical Journal E, 36. (2013), 6, p. 58
- Haibo, et al., Proposed Approximation for Contact Angles in Shan-and-Chen-type Multicomponent Multiphase Lattice Boltzmann Models, Physical Review E. (2007),
- Hao, P.F., et al., Wetting Property of Smooth and Textured Hydrophobic Surfaces under Condensation Condition, Science China, 57. (2014), 11, pp. 2127-2132
- Zou, Q., et al., On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK model, Physics of Fluids, 9. (1996), 6
- Xin, W.A., et al., Lattice Boltzmann Simulation of Dropwise Condensation on the Microstructured Surfaces with Different Wettability and Morphologies, International Journal of Thermal Sciences, 160.