THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

THEORETICAL INVESTIGATION ON THE ELASTIC AND THERMODYNAMIC PROPERTIES OF CUINS2

ABSTRACT
The first-principles method based on the density functional theory is used to investigate the properties of chalcopyrite CuInS2 crystal. The crystal structural parameters are optimized, and the elastic constants and bulk modulus are also calculated, and the results are highly consistent with those in the literature. The stability of the crystal is judged from the Born stability criteria. Based on the quasi-harmonic Debye model, the pressure and temperature dependencies of the bulk modulus, the Debye temperature, the Grüneisen parameter, and the thermal expansion coefficient are obtained.
KEYWORDS
PAPER SUBMITTED: 2021-08-01
PAPER REVISED: 2021-10-13
PAPER ACCEPTED: 2021-10-13
PUBLISHED ONLINE: 2021-10-30
DOI REFERENCE: https://doi.org/10.2298/TSCI210801302F
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 3, PAGES [2823 - 2830]
REFERENCES
  1. Du, J.J., et al., Research progress of CIS(CIGS) membrane materials, Materials Review, 21(2007), 4, pp.9-12.
  2. Li, J., et al., Preparation of CuInS2 thin films by single-step electrodeposition, Acta Phys Chim Sin, 25 (2009), 12, pp.2445-2449.
  3. Sun, Q.,et al., Preparation of CuInS2 semiconductor thin films by electrodeposition and their optical properties, Journal of Artificial Crystals,42(2013), 1, pp. 65-71.
  4. Wang, Z.D., et al., Preparation and properties of CuInS2 thin films by single source thermal evaporation, Vacuum, 48 (2011), 1, pp. 29-32.
  5. Feng, L., et al., Study on the structure, morphology and optical properties of CuInS2 nanocrystals, Journal of Chemical, 69 (2011), 23,pp. 2870-2876.
  6. Lazewski,J., et al., Band structure, Born effective charges and lattice dynamics of CuInS2 from ab initio calculations, Journal of Chemical Physics, 117 (2002), 6, pp.2726-2731.
  7. Yamamoto, T. and Katayamayoshida, H. A codoping method in CuInS2 proposed by ab initio electronic structure calculations, Tetnary and Multinary Compounds, 152(1998), pp.37-40.
  8. Eryigit, R., et al., Ab initio vibrational and dielectric properties of chalcopyrite CuInS2, European Physical Journal B, 33 (2003), 3, pp.251-254.
  9. Zhao, Y. J. and Zunger, A., Electronic structure and ferromagnetism of Mn-substituted CuAlS2 , CuGaS2, CuInS2, CuGaSe2 and CuGaTe2, Physical Review B, 69(2004), 10, pp.104422-104428.
  10. Verma, A. S., et al., Elastic properties of chalcopyrite structured solids, Materials Chemistry and Physics, 132(2012), 2, pp. 416-420.
  11. Hohenberg, P. and Kohn, W. Inhomogeneous electron gas, Physical Review, 136(1964), 3B, B864-B871.
  12. Kohn, W. and Sham,L.J., Self-consistent equations including exchange and correlation effects, Physical Review, 140(1965), 4A, pp. A1133-A1138.
  13. Payne, M. C., et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Reviews of Modern Physics, 64(1992), 4, pp.1045-1097.
  14. Milman, V., et al., Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, International Journal of Quantum Chemistry, 77(2000), 5, pp. 895-910.
  15. Perdew, J. P., et al., Generalized gradient approximation made simple, Physical Review Letters, 77(1996), 18, pp. 3865-3868.
  16. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review B, 41(1990), 11,pp. 7892-7895.
  17. Hahn, H., et al., Zeitschrift fur Anorganische und Allgemeine Chemie, 271(1953), pp.153-170
  18. Abrahams, S. C. and Bernstein, J. L., Piezoelectric nonlinear optic CuGaS2 and CuInS2 crystal structure: Sublattice distortion inAI BIII C VI2 andA II BIV CV2 type chalcopyrites , Journal of Chemical Physics,59(1973), 10, pp. 5415-5422
  19. Karki, B. B., et al., Structure and elasticity of MgO at high pressure, American Mineralogist, 82(1997), pp.51-60.
  20. Wentzcovitch, R. M., et al., Ab initio study of MgSiO3 and CaSiO3 perovskites at lower-mantle pressures, Physics of the Earth and Planetary Interiors, 90(1995), pp.101-112.
  21. Born, M. and Huang, K., Dynamical theory of crystal lattices, Oxford: Clarendon Press, 1954.
  22. Neumann, H., Lattice dynamics and related properties of AIBIII and AIIBIV compounds I. Elastic constants, Crystal Research and Technology, 39(2004 ), 11, pp.939-958.
  23. Shein, I. R., Ivanovskii, A. L., Elastic properties of quaternary oxypnictides LaOFeAs and LaOFeP as basic phases for new 26-52 K superconducting materials from first principles,Scripta Materiali, 59(2008), 10, pp. 1099-1102.
  24. Reuss, A. Calculation of the flow limits of mixed crystals on the basis of the plasticity of mono-crystals, Journal of Applied Mathematics and Mechanics , 9(1929), pp. 49-58.
  25. Mehl, M. J., Osburn, J. E., Papaconstantopoulus D A et al. Structural properties of ordered high melting temperature intermetallic alloys from first-principles total-energy calculations, Physical Review B, 41(1990), pp. 10311-10323.
  26. Hill, R.The elastic behaviour of a crystalline aggregate, Proceedings of the Physical Society Section A, 65(1952), pp.349-354.
  27. Pugh, S. F., Relations between the elastic moduli and the plastic properties of polycrystalline puremetals, Philosophical Magazine, 45(1954), pp.823-84.
  28. Birch, F. Finite Elastic Strain of Cubic Crystals, Physical Review, 71(1947), pp. 809-824.
  29. Blanco, M.A., et al., GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model , Computer Physics Communications, 158(2004), 1, pp.57-72.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence