International Scientific Journal


The Nanocrystaline diamonds are very important biomedical material with variety of applications. The experimental procedures and results have been done in the Institute of Functional Nanosystems at the University Ulm, Germany. There is an existing biocompatibility of the diamond layers, selectively improved by biomimetic 3-D patterns structuring. Based on that, we have been inspired to apply the graph theory approach in analysing and defining the physical parameters within the structure of materials structure samples. Instead the parameters values, characteristic at the samples surface, we penetrate the graphs deeply in the bulk structure. These values could be only, with some probability, distributed through the micro-structure what defines not enough precious parameters values between the micro-structure constituents, grains and pores. So, we originally applied the graph theory to get defined the physical parameters at the grains and pores levels. This novelty, in our paper, we applied for thermophysical parameters, like thermoconductiviy. By graph approach we open new frontiers in controlling and defining the processes at micro-structure relations. In this way, we can easily predict and design the structure with proposed parameters.
PAPER REVISED: 2021-07-21
PAPER ACCEPTED: 2021-07-30
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 3, PAGES [2177 - 2186]
  1. V.V.Mitić, G. Lazović, B.M.Randjelović, V.Paunović, J.M. Wu, D.Mancić, J.R. Hwu, Fractal Microeletronic Frontiers and Graph Theory Applications, Int.Conf. MS&T 2019, Portland, USA, Sep 29 - Oct 03, 2019.
  2. V.V.Mitic, G.Lazovic, B.M.Randjelovic, V.Paunovic, I.Radovic, A.Stajcic, B.Vlahovic, Graph Theory Applied to Microelectronic Intergranular Relations, Ferroelectrics, 570 (2021).
  3. B.Randjelovic, V.V.Mitic, S.Ribar, I.Radovic, A.Stajcic, I.Novakovic, B.Vlahovic, Ceramics, Materials, Microelectronics and Graph Theory new Frontiers, Modern Physic Lett. B, Vol 34, 34, pp. 2150159 (2020).
  4. B.M.Randjelovic, V.V.Mitic, I.Ilic, S.Ribar, A.Stajcic, H.Fecht, B.Vlahovic, 3D-graph Approach for Breakdown Voltage Calculation on BaTiO3-Ceramics, Int.J. of Modern Physic B, Vol 35, 6, pp. 2150103 (2021).
  5. B.Randjelović, Z.Nikolić, Graph theory applied to modeling and simulation of microstructure evolution in sintering, Advanced Ceramics and Applications VIII: New Frontiers in Multifunctional Material Science and Processing, Invited Lecture, Book of Abstracts, Eds. V. Mitić, L. Mančić, N. Obradović, Belgrade, Serbian Ceramic Society, 23-25 Sep. 2019, p. 38.
  6. B.M.Randjelovic, V.V.Mitic, S.Ribar, M.Čebela, M.Mohr, H.Fecht, B.Vlahovic. Graph Theory Approach in Synthetized Diamonds Electrophysical Parameters Defining, In: Biocompatible and biomimetic features of materials for biomedical applications - new insights, Springer, 2021. (accepted)
  7. V.V.Mitić, G.Lazović, J.Ž. Manojlović, H. Wen-Chieh, M.M.Stojiljković, H.Fecht, B.Vlahović. Entropy and fractal nature, Thermal Science, 24 (3), 2020, 2203- 2212.
  8. V.V.Mitić, G.Lazović, D.M.Djordjevic, M.N.Stankovic, V.V.Paunovic, N.S.Krstic, J.Ž. Manojlović, Butler-Volmer Current Equation and Fractal Nature Correction in Electrochemical Energy, Thermal Science, 2021, (accepted for publishing).
  9. V.V.Mitic, G.Lazovic, V.Paunovic, N.Cvetkovic, S.Veljkovic, B.M.Randjelovic, B.Vlahovic, Fractal frontiers in microelectronic ceramic materials, Ceramics International, 2019, 45, 7, Part B (2019), pp. 9679-9685.
  10. V.V.Mitic, G.Lazovic, V.Paunovic, S.Veljkovic, B.M.Randjelovic, B.Vlahovic, H.Fecht, Electronic ceramics fractal microstructure analysis-Minkowski Hull and grain boundaries, Ferroelectrics, 545:1 (2019) 184-194.
  11. V.V.Mitic, S.Ribar, B.M.Randjelovic, C.-A. Lu, I.Radovic, A.Stajcic, I.Novakovic, B.Vlahovic, Neural Networks and Microelectronic Parameters Distribution Measurements depending on Sinthering Temperature and Applied Voltage, Modern Physic Letters B, Vol 34, 35 pp. 2150172 (2020).
  12. V.V.Mitic, Lj.M.Kocic, S.Tidrow, and H.J.Fecht, Structures, Fractals and Energy. Nanotechnology for Energy Sustainability, Vol.2, (Baldev Raj, Marcel Van de Vorde, Yashwant Mahajan, eds.), (Wiley-VCH Verlag GmbH & Co. KGaA, Germany 2017).
  13. B.Randjelovic, Z.Nikolic, A Mathematical Model for Simulation of Intergranular μ-Capacitance as a Function of Neck Growth in Ceramic Sintering. In: Daras N., Rassias T. (eds) Computational Mathematics and Variational Analysis, Springer Opt.and Its Appl.159. Springer (2020) pp 403-420.
  14. M. Mohr, Neuartige nanostrukturierte Diamantschichten mit optimierten mechanischen, elektrischen und thermischen Eigenschaften, Diss. Universität Ulm, 2017.
  15. N. Wiora, M. Mertens, K. Brühne, H.-J. Fecht, I. C. Tran, T. Willey, A. van Buuren, J. Biener and J.-S. Lee, "Grain boundary dominated electrical conductivity in ultrananocrystalline diamond," J. Appl. Phys., p. 122, (145102) 2017.
  16. V.V.Mitic, H. -J. Fecht, M.Mohr, G.Lazovic, Lj.Kocic, Exploring fractality of microcrystalline diamond films, AIP Advances 8, 075024 (2018).
  17. I Ilić, Weak convergence of product of sums of independent variables with missing values, FILOMAT, Vol 24, Issue 3, 2010, pages 73-81.
  18. I.Ilić, V.Veličković, Simple tail index estimation for dependent and heterogeneous data with missing values, Brazilian Journal of Probability and Statistics 33 (1) (2019), 192-203.
  19. D. G. Cahill and R. O. Pohl, Phys. Rev. B. 35, 4067 (1987)
  20. D. G. Cahill, Rev. Sci. Instrum. 61, 802 (1980)
  21. G. T. Hohensee, R. B. Wilson, D. G. Cahill, Nat. Commun. 6, 6578, (2016)
  22. M. Mohr, L. Daccache, S. Horvat, K. Brühne, T. Jacob, H.-J. Fecht, Acta Materialia, 122, 92-98 (2017).

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence