THERMAL SCIENCE
International Scientific Journal
EXPERIMENTAL AND NUMERICAL STRESS AND STRAIN ANALYSIS OF THE BOILER REVERSING CHAMBER TUBE PLATE
ABSTRACT
Boilers are one of the most used units for both heat generation plants and industry systems. Their operation is subjected to different working loads and maintenance requirements. Exploitation experience points out critical boiler zones where failures and break downs typically occur. This paper analyzes critical zones in hot water fire-tube boiler. Experimental procedure was performed on the model of this type of boilers and its critical element. The tube plate of hot water boiler was identified as the most critical one. Experimental analysis and numerical model verification were performed using Aramis system based on 3-D digital image correlation method. Numerical analysis was done in ANSYS software package and verification of results was done based on measurements obtained by strain gauges and local measurements performed by the Aramis system. Stress-strain analysis indicates the critical zones of boiler tube plate. The character of change parameters such as strain and stress occurring in the critical zones can be verified both by experimental and numerical data. The paper presents a novel approach in experimental and numerical analyses that can be conducted in similar units and used for existing unit optimization, as well as for new product testing on different loads and provide opportunity for further development and improvement for practical industrial application.
KEYWORDS
PAPER SUBMITTED: 2021-03-13
PAPER REVISED: 2021-05-07
PAPER ACCEPTED: 2021-05-07
PUBLISHED ONLINE: 2021-06-05
THERMAL SCIENCE YEAR
2022, VOLUME
26, ISSUE
Issue 3, PAGES [2135 - 2145]
- Nazeer,W. A., et al., In-situ Species, Temperature and Velocity Measurements in a Pulverized Coal Flame, Combustion Sciences and Technology, 143 (1999), 2, pp. 63-77
- Gulič, M., et al., Steam boilers (in Serbian language Parni Kotlovi), Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia, 1991
- Gaćeša, B., Numerical-experimental analysis of strength of boiler structures, Ph.D. thesis, Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia, 2011
- EN 12953 - Shell Boilers - General, Materials for pressure parts of boilers and accessories, Design and calculation for pressure parts, Requirements for equipment for the boiler, 2012
- Rajic, M., et al., Construction optimization of hot water fire-tube boiler using thermo mechanical finite element analysis, Thermal Science, 22 (2018), Suppl.5, pp. 1511-1523
- Qian, C.F., et al., Finite Element Analysis and Experimental Investigation of Tubesheet Structure, Journal of Pressure Vessel Technology, 131 (2009), 1, pp. 111-114
- Yong Ling, Y., JU, Y., The Analysis of the Stress and Shift of Tube plate and Edge of Manhole of Boiler, Journal of Dalian Fisheries University, 1 (2000), 1, pp.71-75
- Čukić, R., Maneski, T., Thermomechanical Stress Analysis of the Hot-water Boiler by FEM, Proceedings, Third International Congress of Thermal Stress 99, Cracow, Poland, 1999
- Liu-Juan, Z., Wen-Zhong, C., ZHU, L., CAI, W., Finite Element Analysis of Overall Strength of Shell and Tube Waste Heat Recovery Boiler, Industrial Boiler, 1 (2009), 1, pp. 19-22
- Yong-Ling, J., Min, T., Simplification of Models and Stress Calculation of Smoke Tubes for Boilers, Journal of Anshan Institute of iron and steel technology, 4 (2000), 23, pp. 282-286
- Gong-Ping, W., Ji-Peng, Z., Wu, G., Zhao, J., The Cause and Prevention of the Tube Plate Crack of One Gas-fired Boiler, Industrial Boiler , 1 (2009), 1, pp. 54
- Ji, Z., et al., Thermo-plastic finite element analysis for metal honeycomb structure, Thermal Science, 17 (2013), 5, pp. 1285-1291
- Gaćeša, B., Thermomechanical analysis of behaviour and improvement of steam block-boiler with three flue gas flows producing smaller steam, Procesna tehnika, 18 (2002), 1, pp. 111-114
- Todorovic, M., et al., Application of energy and exergy analysis to increase efficiency of a hot water gas fired boiler, Chem. Ind. Chem. Eng. Q., 20 (2014), 4, pp. 511-521
- Gaćeša, B., et al., Numerical and experimental strength analysis of fire-tube boiler construction, Tehnički vjesnik, 18 (2011), 2, pp. 237-242
- Gaćeša, B., et al., Influence of Furnace Tube Shape on Thermal Strain of Fire-Tube Boilers, Thermal Science, 18 (2014), Suppl. 1, pp. S29-S47
- Živković, D., et al., Thermomechanical Finite Element Analysis of Hot Water Boiler Structure, Thermal Science, 16 (2012), Suppl. 2, pp. 443 - 456
- Živković, D., et al., Numerical method application for thermo-mechanical analysis of hot water boilers construction, Proceedings, 24th International Conference On Efficiency, Cost, Optimization, Simulation And Environmental Impact Of Energy Systems - ECOS 2011, Novi Sad, Serbia, 2011, pp. 1351 - 1362
- Milćić, D., et al., Finite Element Thermal Analysis of Hot Water Boilers, Proceedings, 14th Symposium on Thermal Science and Engineering of Serbia - SIMTERM 2009, Sokobanja, Serbia, 2009, pp. 692-697
- Jian, H., YuPeter G. D., Dynamic Impact Deformation Analysis Using High-speed Cameras and ARAMIS Photogrammetry Software, Army Research Laboratory - ARL report number ARL-TR-5212, 2010
- Orteu, J., 3-D computer vision in experimental mechanics, Opt. Lasers Eng. 47 (2009), pp. 282-291
- Pan, B., et al., Optimization of a three-dimensional digital image correlation system for deformation measurements in extreme environments, Appl. Opt. 51 (2012), pp. 440-449
- Sutton, M., et al., Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications, Springer, Berlin, 2009
- Mitrović, N., et al., Experimental and numerical study of globe valve housing, Chemical Industry, 71 (2017), 3, pp. 251-257
- Milosevic, M., et al., Digital image correlation in analysis of stiffness in local zones of welded joints, Technical Gazette, 23 (2016), pp. 19-24
- Mitrovic, N., et al., Strain measurement of pressure equipment components using 3D DIC method, Proceedings, Structural Integrity Procedia 13, 22nd European Conference on Fracture - ECF22, 2018, pp. 1605-1608
- Milosevic, M., et al., Measurement of local tensile properties of welded joint using Digital Image Correlation method, Chemicke Listy, 106 (2012), pp. 485-488
- Lezaja, M., et al., Bond strength of restorative materials to hydroxyapatite inserts and dimensional changes of insert-containing restorations during polymerization, Dental Materials, 31 (2015), 2, pp. 171-181
- Milosevic, M., et al., Digital Image Correlation Analysis of Biomaterials, Proceedings, 15th IEEE International Conference on Intelligent Engineering Systems, 2011, pp. 421-425
- Tanasic, I., et al., Enhanced in-vivo bone formation by bone marrow differentiated mesenchymal stem cells grown in chitosan scaffold, J Bioengineer & Biomedical Sci., 2 (2012), 1, pp. 1-6
- Mitrovic, A., et al., Thermal and Mechanical Characteristics of Dual Cure Self-etching, Self-adhesive Resin Based Cement, Experimental and Numerical Investigations in Materials Science and Engineering, 54 (2018), pp. 3-15
- Milosevic, M., et al., Analysis of Composite Shrinkage Stresses on 3D Premolar Models with Different Cavity Design using Finite Element Method, Key Engineering Materials, 586 (2014), pp. 202-205
- Tanasic, I., et al., Analysing Displacement in the Posterior Mandible using Digital Image Correlation Method, J Biochip Tissue chip, S1(2011), pp.1-6
- Petrovic, S., et al., Rapid Evaluation of Maintenance Process Using Statistical Process Control and Simulation, Int. Journal of Simulation Modelling, 17 (2018), 1, pp. 119-132
- Sadowski, T., et al., Modelling and experimental study of parallel cracks propagation in an orthotropic elastic material, Comput. Mater. Sci., 52 (2012), pp. 231-235
- Balac, M., et al., Numerical predictions of crack growth in a pressure vessel with welded nozzles, Structural Integ. Life., 15 (2015), pp. 55-61
- Rajic, M., et al., Experimental and Numerical Analysis of Stress-Strain Field of the Modelled Boiler Element, Experimental and Computational Investigations in Engineering. CNNTech 2020. Lecture Notes in Networks and Systems, Springer, Cham, 153 (2021), pp. 257-273
- Aramis - 3D Deformation Analysis, GOM, Germany, www.gom.com/metrology-systems/systemoverview/aramis.html