THERMAL SCIENCE

International Scientific Journal

AUGMENTATION OF CONVECTION HEAT TRANSFER FROM A HORIZONTAL CYLINDER IN A VENTED SQUARE ENCLOSURE WITH VARIATION OF LOWER OPENING SIZE

ABSTRACT
Natural and mixed convection heat transfer from a horizontal cylinder placed in a vented square enclosure has been investigated using numerical method with ANSYS Fluent 16.1 software for laminar and turbulent flow. Navier-Stokes equations and energy equation with standard k-ω transport equation turbulence model have been used to simulate both flow and thermal behaviors. The operating conditions covered a range of the Rayleigh number from 103 to 106 and the Richardson number range between 0.1 and 100 at variable sizes of the lower open vent with constant upper opening size. The Nusselt numbers, velocity lines and isotherms are presented to display the flow and thermal behaviors. The results displayed that the average Nusselt number is affected by Rayleigh number, Richardson number, enclosure width, and lower opening size. The Nusselt number is enhanced by controlling the lower opening size. The maximum enhancement range for Nusselt number is between 20-85% depending on the Rayleigh number, Richardson number, enclosure width to cylinder diameter, and lower opening size. The velocity lines and isotherms are directly affected by the Rayleigh number, Richardson number, enclosure width to cylinder diameter, and lower opening size.
KEYWORDS
PAPER SUBMITTED: 2020-11-19
PAPER REVISED: 2021-02-01
PAPER ACCEPTED: 2021-02-26
PUBLISHED ONLINE: 2021-05-16
DOI REFERENCE: https://doi.org/10.2298/TSCI201119176A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 3, PAGES [2027 - 2041]
REFERENCES
  1. Bejan, A., Convection Heat Transfer, 4th ed. Wiley, 2013.
  2. Karimi, F., Xu, H., Wang, Z., Yang, M., Zhang, Y. Numerical simulation of steady mixed convection around two heated circular cylinders in a square enclosure, Heat Transf. Eng., 37 (2016), 1, pp. 64-75 doi: 10.1080/01457632.2015.1042343.
  3. Bergman, T., Incropera, F. P., Dewitt, D. P., Fundamentals of Heat and Mass Transfer. Jefferson: JOHN WILEY & SONS, USA, 2011.
  4. Ali, O., Experimental and Numerical Investigation of Natural Convection Heat Transfer from Different Cross Section Cylinders in a Vented Enclosure, Ph. D. thesis, Mosul University, Mosul, Iraq, 2008.
  5. Kahwaji, G. Y. and Samaha, M. A., Passive natural convection augmentation from horizontal cylinder using a novel shroud-chimney configuration, J. Thermophys. Heat Transf., 33 (2019), 4, pp. 1006-1017 doi: 10.2514/1.T5686.
  6. Rath, S., Dash, S. K., Natural Convection in Power-Law Fluids from a Pair of Two Attached Horizontal Cylinders, Heat Transf. Eng., 42 (2021), 7, pp. 627-653, doi: 10.1080/01457632.2020.1716487.
  7. Ali, O., Zaidky, R., Saleem, A., Numerical Investigation of Natural Convection Heat Transfer From Circular Cylinder Inside an Enclosure Containing Nanofluids, International Journal of Mechanical Engineering and Technology, 5 (2014), 12, pp. 66-85.
  8. Zeinab, A. M. A., RASHED, Z., Sameh E. A., Heat Transfer Enhancement In The Complex Geometries Filled With Porous Media," Therm. Sci., 25 (2021), 1, doi: thermalscience.vinca.rs/pdfs/papers-2019/TSCI181218166R.pdf.
  9. Nada, S. A., Said, M. A., Effects of fins geometries, arrangements, dimensions and numbers on natural convection heat transfer characteristics in finned-horizontal annulus, Int. J. Therm. Sci., 137 (2018), November, pp. 121-137, doi: 10.1016/j.ijthermalsci.2018.11.026.
  10. Jani, S., Mahmoodi, M., Amini, M., Jam, J. E., Numerical investigation of natural convection heat transfer in a symmetrically cooled square cavity with a thin fin on its bottom wall, Therm. Sci., 18 (2014), 4, pp. 1119-1132, doi: 10.2298/TSCI110612139J.
  11. Ashorynejad, H. R., Farhadi, M., Sedighi, K., Hasanpour, A., Natural convection in a porous medium rectangular cavity with an applied vertical magnetic field using Lattice Boltzmann Method, Appl. Mech. Mater., 110-116 (2012), 1, pp. 839-846, doi: 10.4028/www.scientific.net/AMM.110-116.839.
  12. Abdulkadhim, A., Al-Farhany, K., Abed, A. M., Effect of adiabatic circular cylinder on the natural convection heat transfer characterizes in a porous enclosure, Chem. Eng. Trans., 71 (2018), pp. 1309-1314, 2018, doi: 10.3303/CET1871219.
  13. Kahwaji, G. Y., Hussien, A. S., Ali, O. , Experimental Investigation Of Natural Convection Heat Transfer From Square Cross Section Cylinder In A Vented Enclosure, J. Univ. DUHOK Pure Eng. Sci., 16 (2013), 1, doi: doi.org/10.26682/eissn.2521-4861.
  14. Rahmati, A. R., Tahery, A. A., Numerical study of nanofluid natural convection in a square cavity with a hot obstacle using lattice Boltzmann method, Alexandria Eng. J., 57 (2018), 3, pp. 1271-1286, doi: 10.1016/j.aej.2017.03.030.
  15. Pourmahmoud, N., Ghafouri, A., Mirzaee, I., Numerical study of mixed convection heat transfer in lid-driven cavity utilizing nanofluid: Effect of type and model of nanofluid, Therm. Sci., 19 (2015), 5, pp. 1575-1590, doi: 10.2298/TSCI120718053P.
  16. Teamah, M. A., Hanafy, A., Dawood, M. M. K., Elmesmari, H. M., Double diffusive mixed convection study in a vertical annulus at different aspect ratio and Richardson number, Alexandria Eng. J., 57 (2018), 4, pp. 3559-3575, doi: 10.1016/j.aej.2018.04.005.
  17. Mahmoodi, M., "Effect Of The Inlet Opening On Mixed Convection Inside A 3-D Ventilated Cavity," Therm. Sci., 22 (2018), 6A, pp. 2413-2424, doi: doi.org/10.2298/TSCI170126121D.
  18. Patel, C. G., Sarkar, S., Saha, S. K., Mixed convective vertically upward flow past side-by-side square cylinders at incidence, Int. J. Heat Mass Transf., 127 (2018), December, pp. 927-947, doi: 10.1016/j.ijheatmasstransfer.2018.06.129.
  19. Nasseri, L., Ameziani, D. E., Rahli, O., Bennacer, R., Numerical study of mixed convection in a ventilated square enclosure with the lattice Boltzmann method, Numer. Heat Transf. Part A Appl., 75 (2019), 10, pp. 674-689, doi: 10.1080/10407782.2019.1608765.
  20. Selimefendigil, F., Ismael, M. A., Chamkha, A. J., Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder, Int. J. Mech. Sci., 124-125 (2017), November, pp. 95-108, doi: 10.1016/j.ijmecsci.2017.03.007.
  21. Fourar, I., Benmachiche, A. H., Abboudi, S., Effect of material and geometric parameters on natural convection heat transfer over an eccentric annular-finned tube," Int. J. Ambient Energy, 0 (2019), 0, pp. 1-11, doi: 10.1080/01430750.2019.1573757.
  22. Graževičius, A., Kaliatka, A., Ušpuras, E., Numerical investigation of two-phase natural convection and temperature stratification phenomena in a rectangular enclosure with conjugate heat transfer, Nucl. Eng. Technol., 52 (2020), 1, pp. 27-36, doi: 10.1016/j.net.2019.06.022.
  23. ANSYS, Inc., ANSYS Fluent User' s Guide Releasde 15.0," ANSIS Publisher, USA, 2013.
  24. ANSYS, Inc., ANSYS Fluent Tutorial Guide R18, ANSYS Publisher, USA, 2018.
  25. Zhu, R., Zhou, P., Li, J., Zhou, C. Q., CFD model evaluation in mixed convection with high Richardson number, Int. J. Heat Mass Transf., 149 (2020), March, pp. 119-133, doi: 10.1016/j.ijheatmasstransfer.2019.119133.
  26. Wilcox, C., David, C., Reassessment of the scale-determining equation for advanced turbulence models, AIAA J., 26 (1988), 11, pp. 1299, doi: 10.2514/3.10041.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence