THERMAL SCIENCE

International Scientific Journal

External Links

RESPONSE TO COMMENT ON: “A CRITICAL REVIEW ON HEAT AND MASS TRANSFER MODELLING OF VIRAL INFECTION AND VIRION EVOLUTION THE CASE OF SARS-COV2”

ABSTRACT
The paper contains a response to the comment by Popovich and Mincheva, focusing on the different meanings of the analysis according to the First and the Second law of thermodynamics and their complementary and never alternative nature.
PAPER ACCEPTED: 2021-12-27
PUBLISHED ONLINE: 2022-01-02
DOI REFERENCE: https://doi.org/10.2298/TSCI211227356T
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 2, PAGES [1219 - 1228]
REFERENCES
  1. Trancossi, M., et al., A Critical Review on Heat and Mass Transfer Modelling of Viral Infection and Virion Evolution: The Case of SARS-CoV2, Thermal Science, 25 (2021), 4A, pp. 2831-2843
  2. Popovic, M.E. and Minceva, M., 2021. Comment on:"A critical review on heat and mass transfer modelling of viral infection and virion evolution: The case of SARS-COV2. Thermal Science, 25 (2021), 6B, pp. 4823-4825.
  3. Trancossi, M., Carli, C., Cannistraro, G., Pascoa, J. and Sharma, S., Could thermodynamics and heat and mass transfer research produce a fundamental step advance toward and significant reduction of SARS-COV-2 spread?. International Journal of Heat and Mass Transfer, 170 (2021), p.120983.
  4. Popovic, Marko, and Mirjana Minceva. "Thermodynamic insight into viral infections 2: empirical formulas, molecular compositions and thermodynamic properties of SARS, MERS and SARSCoV-2 (COVID-19) viruses." Heliyon, 6 (2020), 9, pp. e04943.
  5. Popovic, M. and Minceva, M., 2020. A thermodynamic insight into viral infections: do viruses in a lytic cycle hijack cell metabolism due to their low Gibbs energy?. Heliyon, 6(2020), 5, pp.e03933.
  6. Szargut, J., Chemical exergies of the elements. Applied energy, 32 (1989), 4, pp.269-286.
  7. Morris, D.R. and Szargut, J. Standard chemical exergy of some elements and compounds on the planet earth. Energy, 11(1986), 8, pp.733-755.
  8. Gibbs, J.W., Thermodynamics (Vol. 1). Longmans, Green and Company, 1906.
  9. Fermi E., Thermodynamics, Prentice-Hall. New York. 1937.
  10. Bejan, A., Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. CRC press, 2013.
  11. Lucia, U., The gouy-stodola theorem in bioenergetic analysis of living systems (Irreversibility in bioenergetics of living systems). Energies, 7 (2014), 9, pp.5717-5739.
  12. Karamarkovic, R.M., Karamarkovic, V.M., Jovovic, A.M., Marasevic, M.M. and Lazarevic, A.D. Biomass gasification with preheated air: energy and exergy analysis. Thermal science, 16 (2012), 2, pp.535-550.
  13. van Brakel, J., Chemical Engineering Science, in Philosophy of Chemistry, Volume 6 in Handbook of the Philosophy of Science, 2012, pp. 531-545
  14. Duhem, P., 1889. Sur les transformations et l'équilibre en Thermodynamique. Note de MP Duhem. CR Acad. Sci. Paris, 108, pp.666-667.
  15. Gouy, G., 1889. Sur les transformation et l'équilibre en Thermodynamique. CR Acad. Sci. Paris, 108(10), pp.507-509.
  16. Kant, I., Critique of Pure Reason, The Cambridge Edition of the Works of Immanuel Kant. Translated and edited by Paul Guyer and Allen W. Wood. Cambridge University Press, 1999.
  17. Szargut, J., Valero, A., Stanek, W. and Valero, A., 2015. Towards an international reference environment of chemical exergy, 1-21, Exergo Ecology Portal. www.exergoecology.com/exergoecology/szargut2005
  18. Bejan, A., Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. Int. J. Energy Res., 26 (2002), pp. 0-43.
  19. Gibbs, J.W., A method of geometrical representation of the thermodynamic properties by means of surfaces. Transactions of Connecticut Acad. of Arts and Sciences, (1873) pp.382-404.
  20. Brachman, M.K., Fermi level, chemical potential, and Gibbs free energy. The Journal of Chemical Physics, 22(6), 1954, pp.1152-1152.
  21. Fasman, G.D., CRC Handbook of Biochemistry and Molecular Biology: Physical and Chemical Data. CRC press, 2018.
  22. Dimian, A.C., Bildea, C.S. and Kiss, A.A., Integrated design and simulation of chemical processes. Elsevier, 2014.
  23. Demirel, Y. and Sandler, S.I., Linear-nonequilibrium thermodynamics theory for coupled heat and mass transport. International Journal of Heat and Mass Transfer, 44 (2001), 13, pp.2439-2451.
  24. Demirel, Y., Nonequilibrium thermodynamics: transport and rate processes in physical, chemical and biological systems. Elsevier, 2007.
  25. Onsager, L., Reciprocal relations in irreversible processes. I. Physical review, 37 (1931), 4, p.405.
  26. Onsager, L., Reciprocal relations in irreversible processes. II. Physical review, 38 (1931), 12, p.2265.
  27. Onsager, L. and Machlup, S., Fluctuations and irreversible processes. Physical Review, 91 (1953), 6, p.1505.
  28. Demirel, Y., Nonequilibrium thermodynamics: transport and rate processes in physical, chemical and biological systems. Elsevier, 2007.
  29. Present, R.D., Chapman-Enskog method in chemical kinetics. The Journal of Chemical Physics, 48 (1968), 11, pp.4875-4877.
  30. Schochet, S. and Tadmor, E., 1992. The regularized Chapman-Enskog expansion for scalar conservation laws. Archive for rational mechanics and analysis, 119(2), pp.95-107.
  31. Huang, H.J. and Ramaswamy, S., Modeling biomass gasification using thermodynamic equilibrium approach. Applied biochemistry and biotechnology, 154 (2009), 1, pp.14-25.
  32. Peterson, M.E., Daniel, R.M., Danson, M.J. and Eisenthal, R., 2007. The dependence of enzyme activity on temperature: determination and validation of parameters. Biochemical Journal, 402(2), pp.331-337.
  33. Crooks, G.E., Entropy production fluctuation theorem and the n onequilibrium work relation for free energy differences. Physical Review E, 60(1999), 3, p.2721.
  34. Carnot, S., Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. In Annales scientifiques de l'École Normale Supérieure, Vol. 1, pp. 393-457, 18.
  35. Rant, Z., Exergie. Ein neues Wort fur technische Arbeits-fahigkeit, Forsch. Ing.-Wes, 22 (1956), pp.36-37.
  36. Sciubba, E. and Wall G., A brief commented history of exergy from the beginnings to 2004. International Journal of Thermodynamics, 10 (2007), 1, pp.1-26.
  37. Kotas, T.J., Exergy method of thermal and chemical plant analysis. Chem. Eng. Res. Des., 64, 1986, 3, pp. 212-229.
  38. Szargut J., Morris D.R., Steward F.R., Exergy analysis of thermal, chemical, and metallurgical processes, Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 1987.
  39. Dincer, I. and Cengel, Y.A., Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy, 3(2001), 3, pp.116-149.
  40. Szargut, J., Exergy analysis. Research in Progress Thermodynamics, 3(2005), 7, pp.31-3.
  41. Szargut, J., Valero, A., Stanek, W., & Valero, A. (2005). Towards an international legal reference environment. Proceedings of ECOS, (2005) 409e17.
  42. Borgert, J.A. and Moura, L.M., Exergetic analysis of glucose metabolism. International Journal of Exergy, 12 (2013), 1, pp.31-53.
  43. Wall, G., Exergetics. Molndal, Sweden, 1998. exergy.se.
  44. Sun, Z., Yan, Y.N., Yang, M. and Zhang, J.Z., 2017. Interaction entropy for protein-protein binding. The Journal of chemical physics, 146 (2017), 12, p.124124.
  45. Khan A, Wei DQ, Kousar K, Abubaker J, Ahmad S, Ali J, Al‐Mulla F, Ali SS, Nizam‐Uddin N, Sayaf AM, Mohammad A. Preliminary Structural Data Revealed That the SARS‐CoV‐2 B. 1.617 Variant's RBD Binds to ACE2 Receptor Stronger Than the Wild Type to Enhance the Infectivity. ChemBioChem.,22(2021),16, pp. 2641

© 2022 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence