THERMAL SCIENCE
International Scientific Journal
THREE-COMPONENT DIAGNOSTICS OF SWIRLING FLOW IN THE MODEL OF AN IMPROVED FOUR-VORTEX FURNACE
ABSTRACT
The spatial structure of a swirling turbulent flow has been investigated based on the three-component laser Doppler anemometry method in an isothermal laboratory model of a four-vortex furnace. The structure of the vortex cores of the flow with the shape of a deformed vertical elliptical cylinder is visualized using the “minimum total pressure” criterion. The spectrum of velocity pulsations indicates the absence of unsteady periodic vortex structures, which means the occurrence of a stable vortex flow in the volume of the combustion chamber.
KEYWORDS
PAPER SUBMITTED: 2021-04-20
PAPER REVISED: 2021-06-10
PAPER ACCEPTED: 2021-06-16
PUBLISHED ONLINE: 2021-07-10
THERMAL SCIENCE YEAR
2022, VOLUME
26, ISSUE
Issue 2, PAGES [1937 - 1944]
- Vamvuka, В., et al., Handbook of Combustion: Overview of solid fuels combustion technologies, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010 DOI:10.1002/9783527628148.hoc056
- Koornneef, J.,et al., Development of fluidized bed combustion—an overview of trends, performance and cost Progress in Energy and Combustion Science, 33 (2007), pp. 19-55, DOI:10.1016/j.pecs.2006.07.001
- Du, R., et al., A sectioning method for the kinetics study on anthracite pulverized coal combustion Journal of Thermal Analysis and Calorimetry, 130 (2017), pp. 2293-2299, DOI: 10.1007/s10973-017-6497-8
- Chen, D., et al., Optimizing in-situ char gasification kinetics in reduction zone of pulverized coal air-staged combustion Combustion and Flame, 194 (2018), pp. 52-71, DOI: 10.1016/j.combustflame.2018.04.015
- Repić, B.S., et al., Review of the investigations of pulverized coal combustion processes in large power plants in laboratory for thermal engineering and energy-Part A Thermal Science 23 (2019), 5, pp. 1587-1609, DOI: 10.2298/TSCI191030443R
- Chernetskiy, M.Yu., et al., Comparative analysis of turbulence model effect on description of the processes of pulverized coal combustion at flow swirl Thermophysics and Aeromechanics, 23 (2016), pp. 591-602, DOI: 10.1134/S0869864316040120
- Eluk, T., et al., Transition mechanism between combustion regions in swirling entrained flow downer reactors Energy and Fuels, 31 (2017), pp. 1927-1934, DOI: 10.1021/acs.energyfuels.6b02225
- Gorelikov, E.U.,et al., Measuring the velocity in pulverized-coal flame at co- and counter-swirl of combustion chamber stage, AIP Conference Proceedings 2027 (2018), 040055. DOI: 10.1063/1.5065329
- Mikhailov, A.S., et al., Features of burning of pulverized peat fuel in a vortex burner device Journal of Engineering Physics and Thermophysics, 91 (2018), pp. 925-932, DOI: 10.1007/s10891-018-1818-8
- Ti S., et al., Influence of different swirl vane angles of over fire air on flow and combustion characteristics and NOx emissions in a 600 MW utility boiler Energy, 74 (2014), pp. 775-787 DOI: 10.1016/j.energy.2014.07.049
- Sung, Y., et al., Generation mechanism of tube vortex in methane-assisted pulverized coal swirling flame Fuel Processing Technology, 156 (2017), pp. 228-234 DOI: 10.1016/j.fuproc.2016.08.034
- Pasymi, et al., Axial inlet geometry effects on the flow structures in a cyclone burner related to the combustion performance of biomass particles Journal of Engineering and Technological Sciences, 50 (2018), 5, pp. 684-697, DOI: 10.5614/j.eng.technol.sci.2018.50.5.7
- Zarzycki, R., Bis, Z., Modelling of the process of coal dust combustion in a cyclone furnace Journalof Thermal Science 26 (2017), 2, pp. 192-198. DOI: 10.1007/s11630-017-0929-4
- Orlova, K.Y., Lebedev, B.V., Research of Power Fuel Low-Temperature Vortex Combustion in Industrial Boiler Based on Numerical Modeling MATEC Web Conferences, 92 (2017), 01003,DOI: 10.1051/matecconf/20179201003
- Volkov, E.P., et al., Studying the aerodynamics of the TPP-210a boiler furnace when it is shifted to operate with dry-ash removal and vortex fuel combustion Thermal Engineering 65 (2018), 10, pp. 691-697,DOI: 10.1134/S0040601518100129
- Alekseenko, S.V., et al., Analysis of combustion of coal-water fuel in low-power hot-water boiler via numerical modeling and experiments Journal of Engineering Thermophysics 28 (2019), 2, pp. 177-189,DOI: 10.1134/S1810232819020024
- Krasinsky, D.V., Sharypov, O.V., Numerical modeling of pulverized coal combustion in the vortex furnace with dual upper-port loading Journal of Engineering Thermophysics24 (2015), 4, pp. 348-356,DOI: 10.1134/S1810232815040098
- Alekseenko, S.V., et al., Investigation of transfer processes in swirling flows in application to vortex furnaces for coal fuel International Journal of Thermal Sciences 161(2021), 106715,DOI: 10.1016/j.ijthermalsci.2020.106715
- Salomatov, V.V., et al., Experimental and numerical investigation of aerodynamic characteristics of swirling flows in a model of the swirling-type furnace of a steam generator Journal of Engineering Physics and Thermophysics 85 (2012), 2, pp. 282-293,DOI: 10.1007/s10891-012-0651-8
- Dubief, Y., Delcayre, F., On coherent-vortex identification in turbulence Journal of Turbulence 1 (2000), pp. 1-22, DOI: 10.1088/1468-5248/1/1/011
- Anufriev, I.S., et al., Aerodynamics of a promising vortex furnace design Technical Physics Letters 41 (2015), 8, pp. 727-730,DOI: 10.1134/S1063785015080027
- Anikin, Yu.A., et al., Diagnostics of swirl flow spatial structure in a vortex furnace model Thermophysics and Aeromechanics 21 (2014), 6, pp. 775-778, DOI: 10.1134/S0869864314060158