THERMAL SCIENCE

International Scientific Journal

THREE-COMPONENT DIAGNOSTICS OF SWIRLING FLOW IN THE MODEL OF AN IMPROVED FOUR-VORTEX FURNACE

ABSTRACT
The spatial structure of a swirling turbulent flow has been investigated based on the three-component laser Doppler anemometry method in an isothermal laboratory model of a four-vortex furnace. The structure of the vortex cores of the flow with the shape of a deformed vertical elliptical cylinder is visualized using the “minimum total pressure” criterion. The spectrum of velocity pulsations indicates the absence of unsteady periodic vortex structures, which means the occurrence of a stable vortex flow in the volume of the combustion chamber.
KEYWORDS
PAPER SUBMITTED: 2021-04-20
PAPER REVISED: 2021-06-10
PAPER ACCEPTED: 2021-06-16
PUBLISHED ONLINE: 2021-07-10
DOI REFERENCE: https://doi.org/10.2298/TSCI210420232A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 2, PAGES [1937 - 1944]
REFERENCES
  1. Vamvuka, В., et al., Handbook of Combustion: Overview of solid fuels combustion technologies, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010 DOI:10.1002/9783527628148.hoc056
  2. Koornneef, J.,et al., Development of fluidized bed combustion—an overview of trends, performance and cost Progress in Energy and Combustion Science, 33 (2007), pp. 19-55, DOI:10.1016/j.pecs.2006.07.001
  3. Du, R., et al., A sectioning method for the kinetics study on anthracite pulverized coal combustion Journal of Thermal Analysis and Calorimetry, 130 (2017), pp. 2293-2299, DOI: 10.1007/s10973-017-6497-8
  4. Chen, D., et al., Optimizing in-situ char gasification kinetics in reduction zone of pulverized coal air-staged combustion Combustion and Flame, 194 (2018), pp. 52-71, DOI: 10.1016/j.combustflame.2018.04.015
  5. Repić, B.S., et al., Review of the investigations of pulverized coal combustion processes in large power plants in laboratory for thermal engineering and energy-Part A Thermal Science 23 (2019), 5, pp. 1587-1609, DOI: 10.2298/TSCI191030443R
  6. Chernetskiy, M.Yu., et al., Comparative analysis of turbulence model effect on description of the processes of pulverized coal combustion at flow swirl Thermophysics and Aeromechanics, 23 (2016), pp. 591-602, DOI: 10.1134/S0869864316040120
  7. Eluk, T., et al., Transition mechanism between combustion regions in swirling entrained flow downer reactors Energy and Fuels, 31 (2017), pp. 1927-1934, DOI: 10.1021/acs.energyfuels.6b02225
  8. Gorelikov, E.U.,et al., Measuring the velocity in pulverized-coal flame at co- and counter-swirl of combustion chamber stage, AIP Conference Proceedings 2027 (2018), 040055. DOI: 10.1063/1.5065329
  9. Mikhailov, A.S., et al., Features of burning of pulverized peat fuel in a vortex burner device Journal of Engineering Physics and Thermophysics, 91 (2018), pp. 925-932, DOI: 10.1007/s10891-018-1818-8
  10. Ti S., et al., Influence of different swirl vane angles of over fire air on flow and combustion characteristics and NOx emissions in a 600 MW utility boiler Energy, 74 (2014), pp. 775-787 DOI: 10.1016/j.energy.2014.07.049
  11. Sung, Y., et al., Generation mechanism of tube vortex in methane-assisted pulverized coal swirling flame Fuel Processing Technology, 156 (2017), pp. 228-234 DOI: 10.1016/j.fuproc.2016.08.034
  12. Pasymi, et al., Axial inlet geometry effects on the flow structures in a cyclone burner related to the combustion performance of biomass particles Journal of Engineering and Technological Sciences, 50 (2018), 5, pp. 684-697, DOI: 10.5614/j.eng.technol.sci.2018.50.5.7
  13. Zarzycki, R., Bis, Z., Modelling of the process of coal dust combustion in a cyclone furnace Journalof Thermal Science 26 (2017), 2, pp. 192-198. DOI: 10.1007/s11630-017-0929-4
  14. Orlova, K.Y., Lebedev, B.V., Research of Power Fuel Low-Temperature Vortex Combustion in Industrial Boiler Based on Numerical Modeling MATEC Web Conferences, 92 (2017), 01003,DOI: 10.1051/matecconf/20179201003
  15. Volkov, E.P., et al., Studying the aerodynamics of the TPP-210a boiler furnace when it is shifted to operate with dry-ash removal and vortex fuel combustion Thermal Engineering 65 (2018), 10, pp. 691-697,DOI: 10.1134/S0040601518100129
  16. Alekseenko, S.V., et al., Analysis of combustion of coal-water fuel in low-power hot-water boiler via numerical modeling and experiments Journal of Engineering Thermophysics 28 (2019), 2, pp. 177-189,DOI: 10.1134/S1810232819020024
  17. Krasinsky, D.V., Sharypov, O.V., Numerical modeling of pulverized coal combustion in the vortex furnace with dual upper-port loading Journal of Engineering Thermophysics24 (2015), 4, pp. 348-356,DOI: 10.1134/S1810232815040098
  18. Alekseenko, S.V., et al., Investigation of transfer processes in swirling flows in application to vortex furnaces for coal fuel International Journal of Thermal Sciences 161(2021), 106715,DOI: 10.1016/j.ijthermalsci.2020.106715
  19. Salomatov, V.V., et al., Experimental and numerical investigation of aerodynamic characteristics of swirling flows in a model of the swirling-type furnace of a steam generator Journal of Engineering Physics and Thermophysics 85 (2012), 2, pp. 282-293,DOI: 10.1007/s10891-012-0651-8
  20. Dubief, Y., Delcayre, F., On coherent-vortex identification in turbulence Journal of Turbulence 1 (2000), pp. 1-22, DOI: 10.1088/1468-5248/1/1/011
  21. Anufriev, I.S., et al., Aerodynamics of a promising vortex furnace design Technical Physics Letters 41 (2015), 8, pp. 727-730,DOI: 10.1134/S1063785015080027
  22. Anikin, Yu.A., et al., Diagnostics of swirl flow spatial structure in a vortex furnace model Thermophysics and Aeromechanics 21 (2014), 6, pp. 775-778, DOI: 10.1134/S0869864314060158

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence