THERMAL SCIENCE

International Scientific Journal

COMPARATIVE ANALYSIS OF CUO-BASED SPIRAL FLOW PHOTOVOLTAIC SHEET AND TUBE THERMAL SYSTEM

ABSTRACT
The current work investigates experimental characteristics of the PVT system integrated with CuO-water spiral flow heat exchanger and compared with non-cooled PV module. The work describes detailed procedure of nanoparticles preparation, SEM characterizations, and heat extraction characteristics of nanofluid in PVT application. The heat exchanger was pasted at the back of polycrystalline PV module to form PVT system to examine cooling ability, power generation, thermal-electrical yield and overall efficiency at a different volume concentration of CuO nanoparticles at steady mass-flow rate of 0.08 kg/s. From the experiments, it was concluded that the CuO-water nanofluids assisted to lessen surface temperature of PV module by extracting heat that enhanced electrical efficiency by an average of 3.53%. It was also seen that electrical and thermal performance was improved at higher volume concentration and overall efficiency of 30.77% and 36.59% were obtained at 0.01% and 0.03% of volume concentration.
KEYWORDS
PAPER SUBMITTED: 2020-11-12
PAPER REVISED: 2021-04-10
PAPER ACCEPTED: 2021-04-12
PUBLISHED ONLINE: 2021-06-05
DOI REFERENCE: https://doi.org/10.2298/TSCI201112197D
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 2, PAGES [1747 - 1755]
REFERENCES
  1. IEA-INTERNATIONAL ENERGY AGENCY (2019), Renewables Information 2019,Paris, www.iea.org/reports/renewables-information-2019
  2. Satpute,J.B.,& Rajan, A. J. (2018). Recent advancement in cooling technologies of solar Photovoltaic (PV) system. FME Transactions, 46(4), 575-584 Available from: 10.5937/fmet1804575s; dx.doi.org/10.5937/fmet1804575s
  3. Konstantinos Ordoumpozanis, et al,(2017), Energy and Thermal Modeling of Building Façade Integrated Photovoltaics. Thermal Science, Year 2018, Volume 22, Issue Supplement 3, S921 - S932. Available from: 10.2298/tsci170905025o; https: //dx.doi.org/10.2298/tsci170905025o
  4. Dubey, S., & Tiwari, G. (2008). Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater. Solar Energy, 82(7), 602-612. Available from: 10.1016/j.solener.2008. 02.005; dx.doi.org/10.1016/j.solener.2008.02.005
  5. Dupeyrat, P., Ménézo, C., Rommel, M., & Henning, H.-M. (2011). Efficient single glazed flat plate photovoltaic-thermal hybrid collector for domestic hot water system. Solar Energy, 85(7), 1457-1468. Available from: 10.1016/j.solener. 2011.04.002; dx.doi.org/10.1016/j.solener.2011.04.002
  6. Dubey, S., & Tay, A. A. (2012). Experimental Study of the Performance of Two Different Types of Photovoltaic Thermal (PVT) Modules under Singapore Climatic Conditions. Journal of Fundamentals of Renewable Energy and Applications, 2, 1-6. Available from: 10.4303/jfrea/r120313; dx.doi.org/10.4303/jfrea/r120313
  7. Haurant, P., Ménézo, C., Gaillard, L., & Dupeyrat, P. (2015). A Numerical Model of a Solar Domestic Hot Water System Integrating Hybrid Photovoltaic/Thermal Collectors. Energy Procedia, 78, 1991-1997
  8. Teo, H., Lee, P., & Hawlader, M. (2012). An active cooling system for photovoltaic modules. Applied Energy, 90(1), 309-315. Available from: 10.1016/j.apenergy.2011.01.017; dx.doi.org/10.1016/j. apenergy.2011.01.017
  9. Bambrook, S., & Sproul, A. (2012). Maximising the energy output of a PVT air system. Solar Energy, 86(6), 1857-1871. Available from: 10.1016/j.solener.2012.02.038; dx.doi.org/10. 1016/j.solener.2012.02.038
  10. Tonui, J., & Tripanagnostopoulos, Y. (2007). Air-cooled PV/T solar collectors with low cost performance improvements. Solar Energy, 81(4), 498-511. Available from: 10.1016/j.solener.2006.08. 002; dx.doi.org/10.1016/j.solener.2006.08.002
  11. N. Taniguchi, (1974). On the Basic Concept of 'Nano-Technology', Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering
  12. Michael, J. J., & Iniyan, S. (2015). Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide - water nanofluid. Solar Energy, 119, 439-451. Available from: 10.1016/j.solener.2015.06.028; dx.doi.org/10.1016/j.solener.2015.06.028
  13. Mohammad Sardarabadi, Mohammad Passandideh-Fard , Saeed Zeinali Heris, (2014). Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units), Energy, 66, 264-272. Available from: 10.1016/j.energy.2014.01.102; dx.doi.org/10.1016/j.energy.2014.01.102
  14. Ghadiri, M., Sardarabadi, M., Pasandideh-Fard, M., & Moghadam, A. J. (2015). Experimental investigation of a PVT system performance using nano ferrofluids. Energy Conversion and Management, 103, 468-476. Available from: 10.1016/j.enconman.2015.06.077; dx.doi.org/10.1016/j. enconman.2015.06.077
  15. Verma, S. K., Tiwari, A. K., & Chauhan, D. S. (2017). Experimental evaluation of flat plate solar collector using nanofluids. Energy Conversion and Management, 134, 103-115
  16. R. Gangadevi, B. K. Vinayagam, S. Senthilraja (2018). Performance analysis of photovoltaic /thermal collector system using ZnO/Water nanofluid , International Journal of Pure and Applied Mathematics, Volume 118 No. 24,1-16
  17. Hussein, H. A., Numan, A. H., & Abdulrahman, R. A. (2017). Improving the Hybrid Photovoltaic/Thermal System Performance Using Water-Cooling Technique and Zn-H2O Nanofluid. International Journal of Photoenergy, 2017, 1-14. Available from: 10.1155/2017/6919054; dx.doi.org/10.1155/2017/6919054
  18. Davarnejad, R., Barati, S. & Kooshki, M. (2013). CFD simulation of the effect of particle size on the nanofluids convective heat transfer in the developed region in a circular tube. SpringerPlus 2, 192, 1-6, doi.org/10.1186/2193-1801-2-192
  19. Nasrin, R., Rahim, N., Fayaz, H., & Hasanuzzaman, M. (2018). Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research. Renewable Energy, 121, 286-300. Available from: 10.1016/j.renene.2018.01.014; dx.doi.org/10.1016/j.renene.2018.01.014
  20. Fudholi, A., Razali, N. F., Yazdi, M. H., Ibrahim, A., Ruslan, M. H., Othman, M. Y., & Sopian, K. (2019). TiO2/water-based photovoltaic thermal (PVT) collector: Novel theoretical approach. Energy, 183, 305-314. Available from: 10.1016/j.energy.2019.06.143; https: //dx.doi.org/10.1016/j.energy.2019.06.143
  21. Gangadevi, R., Vinayagam, B. K., & Senthilraja, S. (2017). Experimental investigations of hybrid PV/Spiral flow thermal collector system performance using Al2O3/water nanofluid. IOP Conference Series: Materials Science and Engineering, 197, 012041. Available from: 10.1088/1757-899x/197/1/012041; https: //dx.doi.org/10.1088/1757-899x/197/1/012041
  22. Tran, T. H., & Nguyen, V. T. (2014). Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review. International Scholarly Research Notices, 2014, 1-14.
  23. Garg, H., & Agarwal, R. (1994). Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells. Energy Conversion and Management, 36(2), 87-99 . Available from: 10.1016/0196-8904(94)00046-3; dx.doi.org/10.1016/0196-8904(94)00046-3
  24. Erdal Yildirim, Mehmet Azmi Aktacir,(2018). Optimization of Photovoltaic System and Technology in view of a Load Profile: Case of Public Building in Turkey, Thermal Science, Year 2019, Volume 23, Issue 6, 3567 - 3577. Available from: 10.2298/tsci180305302y; dx.doi.org/10.2298/tsci180305302y
  25. L.S. Pantić et al., (2016). Electrical energy generation with differently oriented photovoltaic modules as façade elements, THERMAL SCIENCE, Vol. 20, No. 4, pp. 1377-1386, doi:10.2298/TSCI150123157P

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence