International Scientific Journal


A new composite Phase change material (PCM) was fabricated by adding 0.05, 0.1, 0.15, 0.2 wt% CuO nanoparticles (NPs) into lauric acid, separately. Scanning electron microscopy (SEM) was used to observe the morphological structures of as-prepared nanoparticles, and XRD analysis was used to characterize their crystalline structure. The phase change properties (phase change temperatures and latent heats) of lauric acid and composite PCMs were obtained using differential scanning calorimetry (DSC). Using a laser flash analyzer (LFA), the thermal conductivity enhancement of the composite PCMs was evaluated. The thermal reliability analysis was implemented to ascertain the results of the composite PCMs over long periods.
PAPER REVISED: 2021-11-18
PAPER ACCEPTED: 2022-01-15
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 2, PAGES [1615 - 1621]
  1. Da Cunha JP, Eames P. Thermal energy storage for low and medium temperature applications using phase change materials-a review. Applied Energy. 2016 Sep 1;177:227-38.
  2. Kaygusuz K. The viability of thermal energy storage. Energy Sources. 1999 Aug 1;21(8):745-55.
  3. Sharshir SW, Peng G, Wu L, Essa FA, Kabeel AE, Yang N. The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance. Applied Energy. 2017 Apr 1;191:358-66.
  4. Kaygusuz K. Phase change energy storage for solar heating systems. Energy sources. 2003 Aug 1;25(8):791-807.
  5. Sharma RK, Ganesan P, Tyagi VV, Mahlia TM. Accelerated thermal cycle and chemical stability testing of polyethylene glycol (PEG) 6000 for solar thermal energy storage. Solar Energy Materials and Solar Cells. 2016 Apr 1;147:235-9.
  6. Sharma RK, Ganesan P, Sahu JN, Metselaar HS, Mahlia TM. Numerical study for enhancement of solidification of phase change materials using trapezoidal cavity. Powder technology. 2014 Dec 1;268:38-47.
  7. Sivasamy P, Harikrishnan S, Jayavel R, Hussain SI, Kalaiselvam S, Lu L. Preparation and thermal characteristics of caprylic acid-based composite as phase change material for thermal energy storage. Materials Research Express. 2019 Aug 23;6(10):105051.
  8. Wang Y, Gao X, Chen P, Huang Z, Xu T, Fang Y, Zhang Z. Preparation and thermal performance of paraffin/Nano-SiO2 nanocomposite for passive thermal protection of electronic devices. Applied Thermal Engineering. 2016 Mar 5;96:699-707.
  9. Brinker CJ, Cao G. Annual Review of Nano Research. World Scientific; 2006.
  10. Manoj Kumar P, Mylsamy K, Saravanakumar PT. Experimental investigations on thermal properties of nano-SiO2/paraffin phase change material (PCM) for solar thermal energy storage applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2020 Oct 1;42(19):2420-33.
  11. Sharma RK, Ganesan P, Tyagi VV, Metselaar HS, Sandaran SC. Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM). Applied Thermal Engineering. 2016 Apr 25;99:1254-62.
  12. Kole M, Dey TK. Effect of prolonged ultrasonication on the thermal conductivity of ZnO-ethylene glycol nanofluids. Thermochimica Acta. 2012 May 10;535:58-65.
  13. Harikrishnan S, Kalaiselvam S. Preparation and thermal characteristics of CuO-oleic acid nanofluids as a phase change material. Thermochimica Acta. 2012 Apr 10;533:46-55.
  14. Wu S, Zhu D, Li X, Li H, Lei J. Thermal energy storage behavior of Al2O3-H2O nanofluids. Thermochimica Acta. 2009 Feb 10;483(1-2):73-7.
  15. Altohamy AA, Abd Rabbo MF, Sakr RY, Attia AA. Effect of water-based Al2O3 nanoparticle PCM on cool storage performance. Applied Thermal Engineering. 2015 Jun 5;84:331-8.
  16. Yuan H, Bai H, Lu X, Zhang X, Zhang J, Zhang Z, Yang L. Size controlled lauric acid/silicon dioxide nanocapsules for thermal energy storage. Solar Energy Materials and Solar Cells. 2019 Mar 1;191:243-57.
  17. Fang G, Li H, Liu X. Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage. Materials Chemistry and Physics. 2010 Aug 1;122(2-3):533-6.
  18. Amin, M, Putra, N, Kosasih, EA, Prawiro, E, Luanto, RA & Mahlia, TM 2017, ‘Thermal properties of beeswax/graphene phase change material as energy storage for building applications, Applied Thermal Engineering, vol. 112, pp. 273-280.
  19. O'Connell, MJ, Bachilo, SM, Huffman, CB, Moore, VC, Strano, MS, Haroz, EH, Rialon, KL, Boul, PJ, Noon, WH, Kittrell, C & Ma, J 2002, ‘Band gap fluorescence from individual single-walled carbon nanotubes, Science, vol. 297, no. 5581, pp. 593-596.
  20. Wang, J, Xie, H, Xin, Z, Li, Y & Chen, L 2010, ‘Enhancing thermal conductivity of palmitic acid-based phase change materials with carbon nanotubes as fillers Sol', Energy, vol. 84, pp. 339-344.
  21. Wu, S, Zhu, D, Zhang, X & Huang, J 2010, ‘Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM)', Energy Fuels, vol. 24, pp. 1894-1898.
  22. Qureshi, Z A, Ali, HM & Khushnood, S 2018, ‘Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review', Int. J. Heat Mass Transf., vol. 127, pp. 836-856.
  23. Karaipekli, A, Biçer, A, Sarı, A & Tyagi, VV 2017, ‘Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes', Energy conversion and management, vol. 134, pp. 373-381.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence