THERMAL SCIENCE

International Scientific Journal

THERMAL PERFORMANCE PREDICTION OF HEAT PIPE WITH TIO2 NANOFLUIDS USING RSM

ABSTRACT
Heat pipe is a two-phase heat transfer device with high effective thermal conductivity and transfer huge amount of heat with minimum temperature gradient in between evaporator and condenser section. This paper objective is to predict the thermal performance in terms of thermal resistance, R, and heat transfer coefficient, h, of screen mesh wick heat pipe with deionized water-TiO2 as working fluid. The input process parameters of heat pipe such as heat load, Q, tilt angle, θ, and concentration of nanofluid, ϕ, were modeled and optimized by utilizing response surface methodology with MINITAB-17 software to attain minimum thermal resistance and maximum heat transfer coefficient. The minimum thermal resistance of 0.1764 °C per W and maximum heat transfer coefficient of 1411.52 W/m2 °C was obtained under the optimized conditions of 200 W heat load, 57.2° tilt angle, and 0.159 vol.% concentration of nanofluid.
KEYWORDS
PAPER SUBMITTED: 2020-12-29
PAPER REVISED: 2021-03-22
PAPER ACCEPTED: 2021-04-02
PUBLISHED ONLINE: 2021-06-05
DOI REFERENCE: https://doi.org/10.2298/TSCI201229199R
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 1, PAGES [641 - 651]
REFERENCES
  1. Naphon, P., Assadamongkol, P., & Borirak, T. (2008). Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency. International communications in heat and mass transfer, 35(10), 1316-1319.
  2. Veerasamy, A., Balakrishnan, K., Teja, S., & Abbas, Y. Z. (2019). Efficiency improvement of heat pipe by using Graphene nanofluids with different concentrations. Thermal Science, (00), 358-358.
  3. Torii, S. (2020). Enhancement of heat transfer performance in pipe flow using graphene-oxide-nanofluid and its application. Materials Today: Proceedings.
  4. Pil Jang, S., & Choi, S. U. (2007). Effects of various parameters on nanofluid thermal conductivity, Journal oh Heat Transfer 129(2007) 617-623
  5. Teng, T. P., Hsu, H. G., Mo, H. E., & Chen, C. C. (2010). Thermal efficiency of heat pipe with alumina nanofluid. Journal of alloys and compounds, 504, S380-S384.
  6. Hassan, M. I., Alzarooni, I. A., & Shatilla, Y. (2017). Heat pipe long term performance using water based nanofluid. Cogent Engineering, 4(1), 1336070.
  7. Das, S. K., Putra, N., Thiesen, P., & Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transfer, 125(4), 567-574.
  8. Somasundaram, D., Mani, A., & Kamaraj, M. (2017). Experimental investigation of thermal performance of metal foam wicked flat heat pipe. Experimental Thermal and Fluid Science, 82, 482-492.
  9. Liu, Z. H., Xiong, J. G., & Bao, R. (2007). Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. International Journal of Multiphase Flow, 33(12), 1284-1295.
  10. Do, K. H., Ha, H. J., & Jang, S. P. (2010). Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids. International Journal of Heat and Mass Transfer, 53(25-26), 5888-5894.
  11. Kang, S. W., Wei, W. C., Tsai, S. H., & Yang, S. Y. (2006). Experimental investigation of silver nano-fluid on heat pipe thermal performance. Applied thermal engineering, 26(17-18), 2377-2382.
  12. Raghuram, J., Kumar, K. P., Khiran, G. V., Snehith, K., & Prakash, S. B. (2017, August). Thermal performance of a selected heat pipe at different tilt angles. In IOP Conference Series: Materials Science and Engineering (Vol. 225, No. 1, p. 012043).
  13. Khalili, M., & Shafii, M. B. (2016). Investigating thermal performance of a partly sintered wick heat pipe filled with different working fluids. Scientiairanica, 23(6), 2616-2625.
  14. Moldoveanu, G. M., Minea, A. A., Huminic, G., & Huminic, A. (2019). Al 2 O 3/TiO2 hybrid nanofluids thermal conductivity: An experimental approach. Journal of Thermal Analysis & Calorimetry, 137(2).
  15. SanthiSree, N., Sudheer, N. V. V. S., & Bhramara, P. (2020). Analysis of Closed Loop Pulsating Heat Pipe using optimization techniques. International Journal of Ambient Energy, 1-10.
  16. Nookaraju, B. C., Kurmarao, P. S. V., Nagasarada, S., Karthikeyan, R., & Vinay, A. (2018). Optimization of Process Parameters of Helical Grooved Heat Pipe Using Response Surface Methodology. Materials Today: Proceedings, 5(2), 5262-5271.
  17. Khoobbakht, G., Najafi, G., Karimi, M., & Akram, A. (2016). Optimization of operating factors and blended levels of diesel, biodiesel and ethanol fuels to minimize exhaust emissions of diesel engine using response surface methodology. Applied Thermal Engineering, 99, 1006-1017.
  18. Kempers, R., Ewing, D., & Ching, C. Y. (2006). Effects of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes. Applied thermal engineering, 26(5-6), 589-595.
  19. Ramachandran, R., Ganesan, K., Rajkumar, M. R., Asirvatham, L. G., & Wongwises, S. (2016). Comparative study of the effect of hybrid nanoparticle on the thermal performance of cylindrical screen mesh heat pipe. International Communications in Heat and Mass Transfer, 76, 294-300.
  20. Solomon, A. B., Ramachandran, K., & Pillai, B. C. (2012). Thermal performance of a heat pipe with nanoparticles coated wick. Applied Thermal Engineering, 36, 106-112.
  21. Kumaresan, G., Venkatachalapathy, S., Asirvatham, L. G., & Wongwises, S. (2014). Comparative studies on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids. International Communications in Heat and Mass Transfer, 57, 208-215.
  22. Reddy, P. V., Prasad, P. R., Krishnudu, D. M., & Goud, E. V. (2019). An investigation on mechanical and wear characteristics of Al 6063/TiC metal matrix composites using RSM. Journal of Bio-and Tribo-Corrosion, 5(4), 1-10.
  23. Kumar, G. S., Reddy, B. V., Sankaraiah, G., & Reddy, P. V. (2018, July). Modeling the performance of vortex tube using response surface methodology and artificial neural networks. In IOP Conference Series: Materials Science and Engineering (Vol. 390, No. 1, p. 012010). IOP Publishing

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence