THERMAL SCIENCE
International Scientific Journal
ON THE P(X) APPROXIMATION IN THE NON-ISOTHERMAL REACTION KINETICS BY A GENERALIZED EXPONENTIAL INTEGRAL THE CONCEPT
ABSTRACT
A non-Arrhenius model based on the Mittag-Leffler function has been conceived as a basic concept. This approach allows modelling both sub-Arrhenius and super-Arrhenius behaviours and giving rise to modified temperature integrals.
KEYWORDS
PAPER SUBMITTED: 2021-07-02
PAPER REVISED: 2021-07-15
PAPER ACCEPTED: 2021-07-17
PUBLISHED ONLINE: 2021-12-18
- Doyl, C. D., Kinetic Analysis of Thermogravimetric Data, J. Appl. Polymer Sci., 5 (1961), 15, pp. 285-292
- Madhusudanan, P. M., Krishnan, K., New Approximation for the p(x) Function in the Evaluation of Non-Isothermal Kinetic Data, Thermochim. Acta, 97 (1986), 1, pp. 189-201
- Flynn, J. H., The Temperature Integral-Its Use and Abuse, Thermochim. Acta, 300 (1997), 1-2, pp. 83-92
- Sestak, J., On the Applicability of the p(x) Function to the Determination of Reaction Kinetics Under Non-Isothermal Conditions, Thermochim. Acta, 3 (1970), 2, pp. 150-154
- Mainardi, F., Masina, E., On Modification of the Exponential Integral with the Mittag-Leffler Function, Frac. Calc. Appl. Anal., 21 (2018), 5, pp. 1156-169
- Coulson, C. A., Duncanson, W. E., LXXX. Some New Values for the Exponential Integral, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 33 (1942), 225, pp. 754-761
- Shoelmich, O., Vorlesungen uber hohere analysis, vol. II, Braunschweig, Germany, 1874, p. 269
- Fang, P. H., Arrhenius Relation and Its Fractalization, Z. Phys. Chem, 219 (2005), 6, pp. 831-836
- Fang, P. H, Kohlrausch and Arrhenius Analysis for Some Solid and Liquid Materials, J. Non-Crystaline Solids, 354 (2008), 10-11, pp. 989-993
- Leon, C., et al., Non-Arrhenius Conductivity in the Fast Ionic Conductor Li0.5La0.5TiO3: Reconciling Spin-Lattice and Electrical-Conductivity Relaxations, Phys. Rev. B, 56 (1997), 9, pp. 5302-5305
- Rivera, A., et al., Temperature Dependence of the Ionic Conductivity in Li3xLa2/3-xTiO3: Arrhenius vs. Non-Arrhenius, Appl. Phys. Lett., 82 (2003), 15, pp. 2425-2427
- Berberan-Santos, M. N., et al., Luminescence Decays with Underlying Distributions of Rate Constants: General Properties and Selected Cases, in: Fluorescence of Supermolecules, Polymers, and Nanosystems, Berberan-Santos, M. N., Ed., Springer Ser., Fluiorescence, 4, (2008), pp. 67-103
- Schelkunoff, S. A., Proposed Symbols for the Modified Cosine and Exponential Integrals, Quart. Appl. Math, 2 (1944), 1, p. 90
- Mainardi, F., On Some Properties of the Mittag-Leffler function Ea(-ta), Completely Monotone for t > 0 with 0 < a < 1, Discrete Cont. Dyn. Syst., 19 (2014), 7, pp. 2267-2278
- Mainardi, F.,Why the Mittag-Leffler Function can be Considered the Queen Function of the Fractional Calculus? Entropy, 22 (2020), 12, ID 1359
- Haupt, P., Lion, A., On Finite Linear Viscoelasticity of Incompressible Isotropic Materials, Acta Mechanica, 159, (2002), 1, pp. 87-124