THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

ON THE P(X) APPROXIMATION IN THE NON-ISOTHERMAL REACTION KINETICS BY A GENERALIZED EXPONENTIAL INTEGRAL THE CONCEPT

ABSTRACT
A non-Arrhenius model based on the Mittag-Leffler function has been conceived as a basic concept. This approach allows modelling both sub-Arrhenius and super-Arrhenius behaviours and giving rise to modified temperature integrals.
KEYWORDS
PAPER SUBMITTED: 2021-07-02
PAPER REVISED: 2021-07-15
PAPER ACCEPTED: 2021-07-17
PUBLISHED ONLINE: 2021-12-18
DOI REFERENCE: https://doi.org/10.2298/TSCI21S2321H
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2021, VOLUME 25, ISSUE Special issue 2, PAGES [321 - 326]
REFERENCES
  1. Doyl, C. D., Kinetic Analysis of Thermogravimetric Data, J. Appl. Polymer Sci., 5 (1961), 15, pp. 285-292
  2. Madhusudanan, P. M., Krishnan, K., New Approximation for the p(x) Function in the Evaluation of Non-Isothermal Kinetic Data, Thermochim. Acta, 97 (1986), 1, pp. 189-201
  3. Flynn, J. H., The Temperature Integral-Its Use and Abuse, Thermochim. Acta, 300 (1997), 1-2, pp. 83-92
  4. Sestak, J., On the Applicability of the p(x) Function to the Determination of Reaction Kinetics Under Non-Isothermal Conditions, Thermochim. Acta, 3 (1970), 2, pp. 150-154
  5. Mainardi, F., Masina, E., On Modification of the Exponential Integral with the Mittag-Leffler Function, Frac. Calc. Appl. Anal., 21 (2018), 5, pp. 1156-169
  6. Coulson, C. A., Duncanson, W. E., LXXX. Some New Values for the Exponential Integral, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 33 (1942), 225, pp. 754-761
  7. Shoelmich, O., Vorlesungen uber hohere analysis, vol. II, Braunschweig, Germany, 1874, p. 269
  8. Fang, P. H., Arrhenius Relation and Its Fractalization, Z. Phys. Chem, 219 (2005), 6, pp. 831-836
  9. Fang, P. H, Kohlrausch and Arrhenius Analysis for Some Solid and Liquid Materials, J. Non-Crystaline Solids, 354 (2008), 10-11, pp. 989-993
  10. Leon, C., et al., Non-Arrhenius Conductivity in the Fast Ionic Conductor Li0.5La0.5TiO3: Reconciling Spin-Lattice and Electrical-Conductivity Relaxations, Phys. Rev. B, 56 (1997), 9, pp. 5302-5305
  11. Rivera, A., et al., Temperature Dependence of the Ionic Conductivity in Li3xLa2/3-xTiO3: Arrhenius vs. Non-Arrhenius, Appl. Phys. Lett., 82 (2003), 15, pp. 2425-2427
  12. Berberan-Santos, M. N., et al., Luminescence Decays with Underlying Distributions of Rate Constants: General Properties and Selected Cases, in: Fluorescence of Supermolecules, Polymers, and Nanosystems, Berberan-Santos, M. N., Ed., Springer Ser., Fluiorescence, 4, (2008), pp. 67-103
  13. Schelkunoff, S. A., Proposed Symbols for the Modified Cosine and Exponential Integrals, Quart. Appl. Math, 2 (1944), 1, p. 90
  14. Mainardi, F., On Some Properties of the Mittag-Leffler function Ea(-ta), Completely Monotone for t > 0 with 0 < a < 1, Discrete Cont. Dyn. Syst., 19 (2014), 7, pp. 2267-2278
  15. Mainardi, F.,Why the Mittag-Leffler Function can be Considered the Queen Function of the Fractional Calculus? Entropy, 22 (2020), 12, ID 1359
  16. Haupt, P., Lion, A., On Finite Linear Viscoelasticity of Incompressible Isotropic Materials, Acta Mechanica, 159, (2002), 1, pp. 87-124

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence