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A non-Arrhenius model based on the Mittag-Leffler function has been conceived 
as a basic concept. This approach allows modelling both sub-Arrhenius and super-
Arrhenius behaviours and giving rise to modified temperature integrals.  
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Introduction 

The temperature integral is a main tool for data treatment in thermal analysis of 

reaction kinetics involving the Arrhenius exponential dependence of the rate constant of the 

temperature, T, namely:  
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where a is the fraction decomposed, T – the absolute temperature, and f(a) – the conversion 

function, depending on the geometry commonly expressed in a general form as 

( ) = (1 )m nf a a a . With a linear heating rate d /d = ,T t b  applying the Arrhenius equation and 

integration (1) can be transformed as: 
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where the lower terminal in the last version of (2) can be taken as zero for practical purposes 

(if the reaction starts at a temperature where its rate extremely slow) [1, 2]. 

The temperature integral 

Changing the variable as = /Rx E T  in the integral and its terminals, we may integrate 

(2) over the time-dependent temperature range thus defining the function ( ) = ( /R )p x p E T  

(temperature integral) [2-4]:  
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Because in the variable = /Rx E T  the ratio E/R is temperature-independent (the 

activation energy is temperature-independent), then 1/ .x T  The last (second) term in p(x) the 

so-called exponential integral commonly denoted as Ei(x) (included as a special function in 

MAPLE and MATHEMATICA) defined [5]: 
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Moreover, the following identities involving the incomplete Gamma function (5) 

holds [5]:  
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where we have [5] 
*(0) = ,Ei   

*( ) = 0,Ei   and 
*( ) = .Ei    The integration in (4) cannot 

be obtained analytically and thus various approximations are widely used, among them: 

Following Coulson and Duncanson [6] the following series expansion hold:  
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where = 0.577216...  is the Euler-Mascheroni constant. 

However, it has been especially mentioned in [6] that none of these approximations is 

particularly convenient in the range 15 < < 25.x  According to Sestak [4] a convergent series:  
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or a semi-convergent series obtained by integration by parts as Ei(x) approximated:  
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can be successfully applied to model experimental data and recover the kinetics parameters 

such as A0 and the activation energy, E. By the revers distribution (1/x) in (3) the following 

successful approximations of Schoelmilch [7], see also [3, 4, 6] is widely applied in solid kinetic 

studies:  
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and consequently, in (9) an is a constant: 
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There are many approximations working in different ranges of variations of the 

variable x, see the excellent review of Flynn [3]. But, following the main idea developed in this 

article we stress the attention on problems emerging from the postulated exponential form of 

the Arrhenius equation (see the next section), which actually is the genesis of the temperature 

(exponential) integral discussed here. 

Arrhenius equation: emerging problems 

The canonical exponential Arrhenius law (1) in logarithmic co-ordinates should give 

a straight line, there are many cases when the experimental curves do not confirm this linear 

behaviour and they are referred as non-Arrhenius [8-11]. In such a case a generalization by the 

Kohlrausch exponential was conceived by Fang [8, 9], namely (in terms of the present article): 
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which for =1  recovers the Arrhenius relationship. It is noteworthy to mention that the 

Kohlrausch function has a series approximation as a special case of the Mittag-Leffler function 

[12]: 
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Motivation and aim 

The main motivation of this work envisages modelling non-Arrhenius kinetic and 

especially the calculation of the temperature integral. The main inspiration comes from the 

authors experience in fractional calculus where the exponential function is only a special case 

of the Mittag-Leffler function as well the series approximation of the Kohlrausch function. But, 

the driving impulse was the excellent work on Mainardi and Massina [5] on a generalization of 

Ei(x) in the sense of the construction of the Schelkunoff integral [13]:  
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The only aim of this work is to construct a rate constant K(T) based on the Mittag- 

-Leffler function of one parameter, thus conceiving a concept of a temperature integral, i.e. the 

p(x) function, as a power-law series relevant to non-Arrhenius (precisely sub-Arrhenius cases). 

Modified non-Arrhenius rate constant K(T) based on Ea(x) function 

Based on the presented motivation and background problems commented, this work 

conceives a non-Arrhenius functional relationship of the temperature dependent rate constant 

K(T): 

 
=0

( 1)
( ) = ( ), = /R , ( ) = , 0 < < 1

( 1)

k k

NA N

k

x
K T A E x x E T E x

k
  

 

 
 


  (13) 

where for = 1  the exponential relationship (1) is recovered. Hence, the power xk should be 

= ( /R) (1/ )k kx E T  and has an unchangeable coefficient (E/R)k: 
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Expressing (13) in dimensionless forms as [KNA(T)]/AN = exp(–x) we get the plots in 

fig. 1(a) with sub-Arrhenius and super-Arrhenius plots as well as analogous behaviour of the 

modified relationship [KNA(T)]/AN = Eα(–x), plotted for different values of α, see fig. 1(b). The 

plots in fig. 1(b) reveal that varying the fractional parameter all lines are above the exponential 

line (sub-exponential behaviour) line beyond a certain value of x, while for small x, there is 

short range with a super-exponential behavior. See similar plots in [14, 15]. This strongly 

indicates that by this modification of the non-Arrhenius relationship a sub-Arrhenius kinetics 

can be modelled. Therefore, the main question at this moment is: where (for which x the 

behaviour changes from super-exponential to sub-exponential? If we try to solve the equation: 
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the trivial solution is for α = 1. However, if we look at the range when x < 1 and x → 0 we may 

use the approximation [14, 15] 
0 ( ) exp[ / (1 )].E x x 
       Then, from the equation 

/ (1 )e = ex x      it follows that / (1 ) =1x    and consequently 
1/[ (1 )] .x     Bearing 

in mind that (1 ) (1)O    for 0 < α < 1 then the transient points for different α are also of 

order of magnitude of unity, as it is indicated by the plots. These approximate estimates are in 

agreement with the results of Haupt and Lion [16], see fig. 2 in [16] where for all α and 0 < x < 

1 the behaviour is super-exponential. However, in general the function ( )E x   for x > 1 

exhibits behaviours that can be employed in modelling of sub-Arrhenius kinetics. 

  

Figure 1. Versions of non-Arrhenius behavior; (a) with sub-Arrhenius and super-Arrhenius areas and 

analogous behaviour of the Mittag-Leffler function Ea(–xa) and (b) with sub-exponential and super-
exponential trends  

Temperature integral of KNA(T)  

Now, the focus is on the function p(x) (the modified temperature integral) generated 

by the modified exponential integral. With KNA(T) defined by (13) the temperature integral takes 

the forms: 
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Alternatively, there is an option for an ad hoc construction concerning the Mittag- 

-Leffler function Ea(–x) to be used only in the second term of temperature integral, see (3), 

namely: 

 
1

2

=0

( )e e ( 1)
( ) = d = d =

( 1)

x x k k

NA

kx x

E x x
P x x x

x x x k



 

    
 


   

 
=2

e (–1)
( ln ) d

( 1)

x k k

k

x
x x

x k k


 

 

  


  (16) 

Hence, we artificially introduced the non-Arrhenius behavior in second term of the 

temperature integral ( ),p x  but not in its initial formulation:  
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as it was done in the case of 1( ).NAP x  For α = 1, the final form of the denominator 

( 1) = . !k k k k   that coincides with the approximations (6) and (7). Comparative plots of two 

well-known approximations with 1( )NAP x  and 2 ( )NAP x  are shown in fig. 2(a) for the case with 

α = 1, because only in this case we may compare all approximations considered here. It is 

remarkable that ad hoc modified function 2 ( )NAP x  is close to the well-known approximations, 

which is natural since for α = 1, we get the classical temperature integral. Further, the variations 

of 1( )NAP x  for different α are shown in fig. 2(b) (this example for small x is mainly applicable 

to super-Arrhenius case since decrease in α shifts downward the lines). For now, it is hard to 

compare all theses approximations in a common range of variations of x due to their different 

rates and magnitudes; as support of this standpoint see the plot of the Schloemilch 

approximation in fig. 2(c) where the order of magnitude varies from 10–10 up to 10–9 in a very 

short range of variations of x. But, in general, all approximations in fig. 2(a) exhibit similar 

trends with increase in x while discrepancies are mainly for small x (high T). 

 

Figure 2. Comparative plots of well-known approximations of p(x) with the new approximation PNA1(x) 
and PNA2(x); (a) 1 – Schloemich, 2 – Sestak, eq. (7), 3 – PNA2(x), 4 – PNA1(x), (b) variations of PNA1(x) for 

different α, and (c) Schoemilch approximation  



Hristov, J
 

 

Final comments and questions 

This short article conceives a concept towards formulation of a generalized Arrhenius 

relationship allowing to model both sub-Arrhenius and super-Arrhenius. The result reveals that 

is more suitable for sub-Arrhenius kinetics. Based on this initial steps we may formulate some 

it is more suitable this drawing some principle lines in the future development of the problem 

conceived here, as follows.  
 As the first step, establishment of the ranges where approximation of sub-Arrhenius 

kinetics can be modelled adequately by ( ).E x    

 How variations in the fractional order α affect the accuracy of approximations and what 

type of techniques should be applied to recover its value from experimental data sets?  

 Tests of developed temperature integrals to real experimental data (taken from both the 

literature and experiments) as well as comparisons with many approximations already 

existing in the literature  

These remarks envisage what would be done, inspired by these first results, but actually 

the concept may provoke more studies and successful application of the ( )E x   function in 

chemical kinetics. 
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