THERMAL SCIENCE

International Scientific Journal

UTILIZATION OF SOYBEAN DREGS FOR SOLID FUEL PRODUCTION THROUGH HYDROTHERMAL CARBONIZATION

ABSTRACT
Hydrothermal carbonization is a thermochemical process used in converting biomass into a coal-like substance known as hydrochar. This is usually carried out at high temperature with water below the saturation pressure for a certain period known as holding time. The biomass used was soybean dregs, which is the residue obtained from processing soy sauce with low economic value. The aim of this study therefore, was to determine the calorific value of the hydrochar produced from soybean dregs at hydrothermal carbonization temperatures of 160°C, 190°C, and 220°C and at holding times of 30 and 60 minutes, also at a temperature of 190°C with the biomass and water ratio at 1:4 and 1:5. The results showed that the highest calorific value was produced a temperature of 220°C and a holding time of 60 minutes, which was 3.866 kcal/kg, the highest carbon content was 26.49%, the lowest moisture content was at 1.77%, the lowest volatile content was at 62.98%, while the lowest ash content was 8.64%. Considering biomass to water ratio with the holding time, the highest calorific value was at 3.546 kcal/kg, the highest carbon content was 20.32%, the lowest moisture content at 1.71%, the lowest volatile content was 68.58%, while the lowest ash content was at 8.37%. The highest calorific value of the hydrochar produced was similar to the calorific value standard of lignite coal which is around 3511-4611 kcal/kg according to the American standard testing and mineral.
KEYWORDS
PAPER SUBMITTED: 2020-02-16
PAPER REVISED: 2020-07-02
PAPER ACCEPTED: 2020-09-20
PUBLISHED ONLINE: 2020-10-10
DOI REFERENCE: https://doi.org/10.2298/TSCI200216292P
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2021, VOLUME 25, ISSUE Issue 6, PAGES [4797 - 4803]
REFERENCES
  1. Badan Pengkajian dan Penerapan Teknologi. (2019). Outlook Energy Indonesia 2018. Jakarta: Pusat Pengkajian Industri Proses dan Energi (PPIPE).
  2. Badan Pengkajian dan Penerapan Teknologi. (2018). Outlook Energy Indonesia 2017. Jakarta: Pusat Teknologi Sumber Daya Energi dan Industri Kimia (PTSEIK).
  3. LIPI. (2014). Konversi Biomassa untuk Energi Alternatif di Indonesia: Tinjauan Sumber Daya, Teknologi, Manajemen, dan Kebijakan. Jakarta: LIPI Press.
  4. Prabowo, B., Yan, M., Syamsiro, M., Setyobudi, R. H., Biddinika, M. K. (2017). State of the art of global dimethyl ether production and its potential application in Indonesia. Proc. Pakistan Academy of Sciences: B. Life and Environmental Sciences 54(1) 29-39
  5. Syamsiro, M., Sitompul, B. B., Surono, U. B., Prabowo, B., Biddinika, M. K. (2018). Alternative solid biofuel production from palm oil residue wastes employing dry torrefaction. AIP Conference Proceedings 1983 (020028)
  6. Novianti, S., Biddinika, M. K., Prawisudha, P., Yoshikawa, K. (2014). Upgrading of Palm Oil Empty Fruit Bunch Employing Hydrothermal Treatment in Lab-scale and Pilot Scale. Procedia Environmental Sciences 20 (2014) 46-54
  7. Direktorat Jenderal Energi Baru Terbaukan dan Konservasi Energi. (2015). Statistik EBTKE 2015. Jakarta: Direktorat Jenderal EBTKE.
  8. Statistics of Indonesia. (2017). Manufacturing Industrial Statistic Indonesia 2015 Raw Material. Jakarta: BPS - Statistics of Indonesia. 05310.1703
  9. Tim Laboratorium Fakultas Peternakan IPB. 2012. Pengetahuan Bahan Pakan Ternak. Bogor: CV.Nutri Sejahtera.
  10. Kim, Daegi., et al. 2012. Hydrothermal Upgrading of Korean MSW for Solid Fuel Production: Effect of MSW Composition. Journal of Combustion. Volume 2012
  11. Lin, Y., Ma, X., Peng, X., Yu, Z. (2016). A mechanism study on hydrothermal carbonization of waste textile. Energy Fuels.
  12. Xinfei Chen, Xiaoqian Ma⁎, Xiaowei Peng, Yousheng Lin, Zhongliang Yao. (2018). Conversion of sweet potato waste to solid fuel via hydrothermal carbonization. Bioresource Technology 249. 900-907
  13. Luca Fiori., et al. (2014). Hydrothermal Carbonization of Biomass: Design of a Batch Reactor and Preliminary Experimental Results. Chemical Engineering Transactions. VOL. 37, 2014
  14. Lucian Michela and Luca Fiori. Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis. Energies 2017, 10, 211; doi:10.3390/en10020211
  15. Nizamuddin S., Humair Ahmed Baloch., G.J. Griffin., N.M. Mubarak., Abdul Waheed Bhutto., Rashid Abro., Shaukat Ali Mazari., Brahim Si Ali. (2017). An overview of effect of process parameters on hydrothermal carbonization of biomass. Renewable and Sustainable Energy Reviews 73 (2017) 1289-1299.
  16. Verónica Benavente., et al. (2014). Upgrading of moist agro-industrial wastes by hydrothermal carbonization. Journal of Analytical and Applied Pyrolysis 113 (2015) 89-98
  17. Eriska, Herlian., Kania, Dewi., Ari, Darmawan P., Enri, Damanhuri. (2016). Hydrothermal Carbonization of Biomass Waste by Using a Stirred Reactor: An Initial Experimental Results. Reaktor, Vol. 16 No. 4, Desember Tahun 2016, Hal. 212-217
  18. Nugroho, A., Pambudi, N. A., Harjanto, B., Febryanto, A., Firdaus, R. A., Setyawan, N. D., Syamsiro, M., Gandidi, I. M. (2019). Production of solid fuel by hydrothermal treatment using Terminalia catappa peels waste as renewable energy sources. IOP Conf. Series: Journal of Physics; Conf. Series (1153) 012083
  19. Bayuningsih Y. (2014). Pengaruh Suhu Pada Proses Hydrothermal Terhadap Karakteristik Batubara. Seminar Nasional Added Value of Energy Resources (AVoER) Ke-6.
  20. Sudiro dan Sigit Suroto. (2014). Pengaruh Komposisi dan Ukuran Serbuk Briket yang Terbuat dari Batubara dan Jerami Padi terhadap Karakteristik Pembakaran. Jurnal Sainstech Politeknik Indonusa Surakarta ISSN : 2355-5009 Vol. 1 Nomor 2 Tahun 2014
  21. Yao, Z., Ma, X., Lin, Y. (2016). Effect of hydrothermal treatment temperature and residence time on characteristic and cobustion behaviors of green waste. Appl. Therm. Eng. 104, 678-686.
  22. Wilasita, D C., dan Purwaningsih, R. (2014). Pemanfaatan Limbah Tongkol Jagung dan Tempurung Kelapa Menjadi Sumber Energi Alternatif dengan Proses Karbonisasi dan Non Karbonisasi. Laboratorium Pengolahan Limbah Industri, Jurusan Teknik Kimia FTI-ITS. Surabaya.
  23. Zang Bide., et al. (2018). Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar. Energies 2018, 11, 2022; doi:10.3390/en11082022.
  24. Syamsiro, M., Sitompul, B. B., Surono, U. B., Prabowo, B., Biddinika, M. K. (2018). Alternative solid biofuel production from palm oil residue wastes employing dry torrefaction. AIP Conference Proceedings (1983) 020028
  25. Lokahita, B., Aziz, M., Yoshikawa, K., Takahashi, F., (2017) Energi and resource recovery from Tetra Pak waste using hydrothermal treatment. Applied Energi (207) 107-113Nazeer,W. A., et al., In-situ Species, Temperature and Velocity Measurements in a Pulverized Coal Flame, Combustion Sciences and Technology, 143 (1999), 2, pp. 63-77
  26. K. Othmer. (2007). Encyclopedia of Chemical Technology : Volume 6, 5th Edition, 5th ed. Wiley-Interscience, Chichester

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence