International Scientific Journal


This paper presents plasma thermal jet simulations with substrate interaction. In this work, 2-D plasma thermal jet simulations will be presented using the ANSYS-CFX code with taking into account the interaction fluid-substrate during thermal spraying. Two models of turbulence are used such as the shear stress transport k-ω (SST-k-ω) and Re-normalization group (RNG-k-ε). The governing parameters of the problem under study are the plasma gas power, the nozzle exit temperature and velocity profiles, the plasma jet temperature and velocity fields and the substrate temperature. The experimental and numerical results are presented in order to carry out a comparison between these results. Moreover, transient simulations will be also treated for different x-positions and different values of time. The distribution of temperature of the substrate will be also presented.
PAPER REVISED: 2020-07-07
PAPER ACCEPTED: 2020-07-08
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2021, VOLUME 25, ISSUE Issue 5, PAGES [3467 - 3478]
  1. Snabre, P., et al., Heat Transfer around a spherical particle levitated in argon plasma jet, The Euro. Physical Journal Applied Physics, 3 (1998), pp. 287-293, DOI:10.1051/epjap:1998232.
  2. Fauchais, P. L., et al., Thermal Spray Fundamentals, Springer, Boston, USA, 2014.
  3. Zhao, Y., et al., Influence of Substrate Properties on the Formation of Suspension Plasma Sprayed Coatings, J. Therm. Spray Technol., 27 (1997), pp. 73-83, DOI: 10.1007/s11666-017-0671-1.
  4. Huang, P.C, et al., A Two-Fluid Model of Turbulence for a Thermal Plasma Jet, Plasma Chemistry and Plasma Processing, 15 (1995), DOI:10.1007/bf01596680.
  5. Chen, C.Z, et al., Improved hardness and corrosion resistance of iron by Ti/TiN multilayer coating and plasma nitriding duplex treatment; Surface & Coatings Technology, 204 (2010), pp. 3082-3086, DOI:10.1016/j.surfcoat.2010.03.017.
  6. Bolot, R., et al., On the use of a low-Reynolds extension to the Chen Kim k-ε model to predict thermal exchanges in the case of an impinging plasma jet, International Journal of Heat and Mass Transfer, 44 (2001), pp. 1095-1106, DOI: 10.1016/s0017-9310(00)00185-x
  7. Qunbo, F., et al., Modeling influence of basic operation parameters on plasma jet, Jour. of materials processing Techn., 198 (2008), pp. 207-212, DOI:10.1016/ j.jmatprotec. 2007.07.008.
  8. Abdellah El-hadj, A., Ait Messaoudene, N., Comparison between Two Turbulence Models and Analysis of the effect of the Substrate Movement on the Flow Field of a Plasma Jet, Plasma Chem. and Plasma Processing, 25 (2005), pp. 699-722, DOI: 10.1007/s11090-005-6821-0
  9. Selezneva, S.E, Boulos, M.I, Supersonic induction plasma jet modelling, Nuclear Instruments and Methods in Physics research, B180 (2001), pp. 306-311, DOI:10.1016/s0168-583x(01)00436-0.
  10. Zhang, T., et al., Effect of a moving flame on the temperature of polymer coatings and substr-ates, Progress in Organic Coatings, 70 (2011), pp. 45-51, DOI:10.1016/j.porgcoat.2010.09.0 18.
  11. Murphy, A.B., Arundell, C.J., Transport Coefficients of Argon, Nitrogen, Oxygen, Argon-Nitrogen, and Argon-Oxygen Plasmas, Plasma Chemistry and Plasma Processing, 14 (1994).
  12. Murphy, A.B., Transport Coefficients of Air, Argon-Air, Nitrogen-Air, and Oxygen-Air Plasmas, Plasma Chemistry and Plasma Processing, 15 (1995).
  13. Selvan, B., et al., Modelling of the plasma-substrate interaction and prediction of substrate temperature during the plasma heating, Eur. Phys. J. D, 61(2011), pp. 663-675, DOI: 10.1140/epjd/e2010-10443-1.
  14. Chen, X., Li, H.P., Three-dimensional flow and heat transfer in thermal plasma systems, Surface and Coatings Technology, 171(2003), pp. 124-133, DOI:10.1016/S0257-8972(03)00252-4
  15. Qunbo, F., et al., 3D simulation of the plasma jet in thermal plasma spraying, Jour. of Materials Processing Technology, 166 (2005), pp. 224-229, doi:10.1016/ j.jmatprotec.2004. 08.022.
  16. Bolot, R., et al.,, Mathematical modeling of a plasma jet impinging on flat structure, Proceedings, 15th International Thermal Spray Conference, Nice, France, 1998,
  17. Hugo, F., et al., Modeling of a substrate thermomechanical behavior during plasma- spraying, Journal of Materials Processing Technology, 190 (2007), pp. 224-229.
  18. Gonzalez, J.J., et al., Comparisons between two-and three-dimensional models:gas injection and arc attachment, J.Phys.D:Appl.Phys.,35(2002), pp. 3181-3191.
  19. Selvan, B., et al., Three-Dimensional Numerical Modeling of an Ar-N2 Plasma Arc Inside a Non-Transferred Torch, Plasma Science and Technology, 11(2009),
  20. Mariaux, G., Vardelle, A., 3-D Time-dependent Modelling of thePlasma Spray process. Part 1: flow modelling, International journal of thermal science, 44 (2005), pp. 357-366
  21. Marchand, C., et al., Liquid Precursor Plasma Spraying: Modelling the Interactions Between the Transient Plasma Jet and the Droplets, Journal of Thermal Spray Technology, 16(2007).
  22. ANSYS FLUENT 6.3.26 User's Guide and Update Manual, Fluent,Inc., 10 Cavendish Court, Lebanon,NH 03766 (1995-2009).
  23. Menter, F.R., Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA Journal, 32(1994), pp. 1598-1605, DOI:10.2514/3.12149.
  24. Pateyron, B., et al., Thermodynamic and transport properties of Ar-H2 and Ar-He plasma gases used for spraying at atmospheric pressure. I: Properties of the mixtures, Plasma Chem. and Plasma Process., 12 (1992), DOI:10.1007/bf01447253.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence