International Scientific Journal


In modern electric vehicles the thermal stability problems associated with Lithium-ion battery system is of major concern. Proper battery thermal management systems is required to ensure safety and efficient performance of battery cells. A realistic conjugate heat transfer and fluid-flow analysis of Lithium-ion prismatic battery cell is performed. The flow of air as coolant, is laminar, flowing between the heat generating battery cells. The effect of few important working parameters like volumetric heat generation, S̅q, conduction-convection parameter, ζcc, Reynolds number, aspect ratio, Ar, and spacing between the cells, W̅f, is investigated in this work. For the wide range of parameters considered, the temperature variations in battery cell and coolant is carried out. Focusing mainly on effect of Reynolds number and W̅f, behavior of local Nusselt number, local friction coefficient, Cf,x, average Nusselt number, average friction coefficient, Cf,avg, maximum temperature, mean fluid temperature, heat removed from the lateral surface of cell are discussed. Average Nusselt number increased with increase in Reynolds number but decreased with increase in W̅f, whereas Cf,avg decreased with increase in Reynolds number and W̅f. It is also found that their exists an upper and lower limit on Reynolds number and W̅f above and below which the change in Cf, avg and average Nusselt number is negligible. Maximum temperature is significantly influenced at low Reynolds number and for all W̅f. From the lateral surface of battery over which the coolant flows, more than 96% of heat generated in cell is removed.
PAPER REVISED: 2020-08-29
PAPER ACCEPTED: 2020-09-02
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2021, VOLUME 25, ISSUE Issue 5, PAGES [3775 - 3787]
  1. X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, "Thermal runaway mechanism of lithium ion battery for electric vehicles: A review," Energy Storage Mater., vol. 10, no. May 2017, pp. 246-267, 2018, doi: 10.1016/j.ensm.2017.05.013.
  2. A. Nazari and S. Farhad, "Heat generation in lithium-ion batteries with different nominal capacities and chemistries," Appl. Therm. Eng., vol. 125, pp. 1501-1517, 2017, doi: 10.1016/j.applthermaleng.2017.07.126.
  3. T. M. Bandhauer, S. Garimella, and T. F. Fuller, "A Critical Review of Thermal Issues in Lithium-Ion Batteries," J. Electrochem. Soc., vol. 158, no. 3, p. R1, 2011, doi: 10.1149/1.3515880.
  4. R. Zhao, J. Liu, and J. Gu, "Simulation and experimental study on lithium ion battery short circuit," Appl. Energy, vol. 173, pp. 29-39, 2016, doi: 10.1016/j.apenergy.2016.04.016.
  5. J. Ye, H. Chen, Q. Wang, P. Huang, J. Sun, and S. Lo, "Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions," Appl. Energy, vol. 182, pp. 464-474, 2016, doi: 10.1016/j.apenergy.2016.08.124.
  6. P. Peng and F. Jiang, "Thermal safety of lithium-ion batteries with various cathode materials: A numerical study," Int. J. Heat Mass Transf., vol. 103, pp. 1008-1016, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.07.088.
  7. B. E. T., A. J.O., O. B.U., and O.D. Samuel, "Carbon Nanotubes: Building Blocks of Nanotechnology Development," J.Nanotech. Prog. Int, vol. 6, no. 2, 2016.
  8. A. Layeni, J. A. Collins Nwaokocha, Olalekan Olamide, Solomon Giwa, Samuel Tongo, Olawale Onabanjo, Taiwo Samuel, Olabode Olanipekun, Oluwasegun Alabi, Kasali Adedeji, Olusegun Samuel, Jagun Zaid Oluwadurotimi, Olaolu Folorunsho, and F. Oniyide, Computational Analysis of a Lecture Room Ventilation System. IntechOpen, 2020.
  9. D. Baker and MW Verbrugge, "Temperature and Current Distribution in Thin‐Film Batteries," J. Electrochem. Soc., vol. 146, no. 7, pp. 2413-2424, 1999, Accessed: May 17, 2018.
  10. P. Ramadass, B. S. Haran, R. E. White, and B. N. Popov, "Capacity Fade of Li - ion Cells Cycled at Elevated Temperatures," J. Power Sources, vol. 112, pp. 606-613, 2002.
  11. R. Mahamud and C. Park, "Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity," J. Power Sources, vol. 196, no. 13, pp. 5685-5696, 2011, doi: 10.1016/j.jpowsour.2011.02.076.
  12. T. Tran, S. Harmand, and B Sahut, "Experimental investigation on heat pipe cooling for Hybrid Electric Vehicle and Electric Vehicle lithium-ion battery," J. Power Sources, vol. 265, pp. 262-272, 2014,
  13. S. Salman Ahmed, J. N., Khaleed, H. M. T., Baig, M. A. A., Khan, T. M. Y., & Kamangar, "Effect of viscous dissipation on aiding flow heat and mass transfer in porous cavity," AIP Conf. Proc., vol. 2104, 2019, doi:
  14. A. R. Ameer Ahamad, N., Azeem, Baig, M. A. A., Durga Prasad Reddy, J., & Reddy, "Heat transfer in a porous cavity with an internal heating strip towards cold surface.," Mater. Today Proc., vol. 27, pp. 1863-1863, 2019, doi:
  15. Z. Rao, Z. Qian, Y. Kuang, and Y. Li, "Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface," Appl. Therm. Eng., vol. 123, pp. 1514-1522, 2017, doi: 10.1016/j.applthermaleng.2017.06.059.
  16. D. Chen, J. Jiang, G. H. Kim, C. Yang, and A. Pesaran, "Comparison of different cooling methods for lithium ion battery cells," Appl. Therm. Eng., vol. 94, pp. 846-854, 2016, doi: 10.1016/j.applthermaleng.2015.10.015.
  17. S. Basu, K. S. Hariharan, S. M. Kolake, T. Song, D. K. Sohn, and T. Yeo, "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Appl. Energy, vol. 181, pp. 1-13, 2016, doi: 10.1016/j.apenergy.2016.08.049.
  18. D. Chalise, K. Shah, R. Prasher, and A. Jain, "Conjugate heat transfer analysis of air/liquid cooling of a Li-ion battery pack," J. Electrochem. Energy Convers. Storage, vol. 15, no. 011008, pp. 1-8, 2018, doi: 10.1115/1.4038258.
  19. X. Li, F. He, and L. Ma, "Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation," J. Power Sources, vol. 238, pp. 395-402, 2013, doi: 10.1016/j.jpowsour.2013.04.073.
  20. A. Afzal, A. D. M. Samee, R. K. A. Razak, and M. K. Ramis, "Steady and Transient State Analyses on Conjugate Laminar Forced Convection Heat Transfer," Arch. Comput. Methods Eng., vol. 27, pp. 135-170, 2020, doi:
  21. A. Afzal, A. D. M. Samee, R. K. A. Razak, and M. K. Ramis, "Thermal management of modern electric vehicle battery systems (MEVBS)," J. Therm. Anal. Calorim., pp. 1-17, 2020, doi: 10.1007/s10973-020-09606-x.
  22. I. Mokashi, S. Afghan, A. Nur, Abdullah, B. Hanafi, Muhammad Azami, and A. Afzal, "Maximum temperature analysis in a Li ‑ ion battery pack cooled by different fluids," J. Therm. Anal. Calorim., pp. 1-17, 2020, doi: 10.1007/s10973-020-10063-9.
  23. A. Afzal, A. D. Mohammed Samee, R. K. Abdul Razak, and M. K. Ramis, "Effect of spacing on thermal performance characteristics of Li-ion battery cells," J. Therm. Anal. Calorim., vol. 135, no. 3, pp. 1797-1811, 2019, doi:
  24. G. Karimi and X. Li, "Thermal management of lithium‐ion batteries for electric vehicles," Int. J. energy Res., vol. 37, no. 1, pp. 13-24, 2012, doi:
  25. R. Pinto, A. Afzal, L. D'Souza, Z. Ansari, and A. D. Mohammed Samee, "Computational Fluid Dynamics in Turbomachinery: A Review of State of the Art," Arch. Comput. Methods Eng., vol. 24, no. 3, pp. 467-479, 2017, doi:
  26. A. Afzal, Z. Ansari, A. Faizabadi, and M. Ramis, "Parallelization strategies for computational fluid dynamics software: state of the art review," Arch. Comput. Methods Eng., vol. 24, no. 2, pp. 337-363, 2017, doi:
  27. K. Yu, X. Yang, Y. Cheng, and C. Li, "Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack," J. Power Sources, vol. 270, pp. 193-200, 2014, doi: 10.1016/j.jpowsour.2014.07.086.
  28. S. Jahangeer, M. K. Ramis, and G. Jilani, "Conjugate heat transfer analysis of a heat generating vertical plate," Int. J. Heat Mass Transf., vol. 50, no. 1-2, pp. 85-93, 2007, doi: 10.1016/j.ijheatmasstransfer.2006.06.042.
  29. M. K. Ramis, G. Jilani, and S. Jahangeer, "Conjugate conduction-forced convection heat transfer analysis of a rectangular nuclear fuel element with non-uniform volumetric energy generation," Int. J. Heat Mass Transf., vol. 51, no. 3-4, pp. 517-525, 2008, doi: 10.1016/j.ijheatmasstransfer.2007.05.019.
  30. M. K. Moharana, P. K. Singh, and S. Khandekar, "Optimum Nusselt Number for Simultaneously Developing Internal Flow Under Conjugate Conditions in a Square Microchannel," J. Heat Transfer, vol. 134, no. 7, p. 071703, 2012, doi: 10.1115/1.4006110.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence