International Scientific Journal


Present communication addresses MHD radiative nanomaterial flow of Ree-Eying fluid between two coaxially rotating disks. Both disks are stretchable. Buongiorno model is used for nanofluids. Nanofluid aspects comprise random motion of particles (Brownian diffusion) and thermophoresis. The MHD fluid is considered. Furthermore, dissipation, radiative heat flux and Ohmic heating effects are considered to model the energy equation. Total entropy rate is calculated through implementation of Second thermodynamics law. Series solutions are developed through homotopy analysis method. Impacts of physical parameters on the velocity, temperature, entropy, and concentration fields are discussed graphically. Skin friction coefficient and heat and mass transfer rates are numerically calculated. It is noticed that the velocity of liquid particles decreases vs. higher estimations of magnetic parameter while it enhances via larger rotational parameter. Temperature field significantly increases in the presence of both Brownian diffusion and thermophoresis parameters.
PAPER REVISED: 2019-12-16
PAPER ACCEPTED: 2020-01-02
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2021, VOLUME 25, ISSUE Issue 5, PAGES [3617 - 3628]
  1. Bell, J. C., Lubrication of Rolling Surfaces by a Ree-Eyring fluid, J. ASLE Transa., 5 (1962), pp. 160-171.
  2. Vergne, F., Chaomleffel, J. P., Dalmaz, G., Elastohydrodynamic lubrication of point contacts with a Ree-Eyring fluid: Film thickness and traction, J. Rheology, 34 (1990), pp. 1357.
  3. Bruce, R. W., Handbook of Lubrication and Tribology, CRC Press, (2012).
  4. Hayat, T., Shah, F., Khan, M. I., Alsaedi, A., Yasmeen, T., Modeling MHD stagnation point flow of thixotropic fluid with non-uniform heat absorption/generation, Microgravity Sci. Technol., 29 (2017), pp. 459-465.
  5. Hayat, T., Khan, M. I., Farooq, M., Alsaedi, A., Waqas, M., Yasmeen, T., Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface, Int. J. Heat Mass Transf., 99 (2016), pp. 702-710.
  6. Jiang, Y., and Xu, Z., Numerical investigation of nanofluid thermocapillary convection based on two-phase mixture model, Microgravity Sci. Technol,, 29 (2017), pp. 365-370.
  7. Khan, M. I., Waqas, M., Hayat, T., Alsaedi, A., A comparative study of Casson fluid with homogeneous-heterogeneous reactions, J. Colloid Interface Sci., 498 (2017), pp. 85-90.
  8. Feng, Y., Li, H. X., Guo, K. K., Zhao, J. F., Wang, T., Numerical study of single bubble growth on and departure from a horizontal superheated wall by three-dimensional Lattice Boltzmann Method, Microgravity Sci. Technol, 30 (2018), pp. 761-773.
  9. Hayat, T., Khan, M. I., Qayyum, S., Alsaedi, A., Entropy generation in flow with silver and copper nanoparticles, Colloid. Surf. A: Physicochem. Eng. Aspect., 539 (2018), pp. 335-346.
  10. Shahid, A., Zhou, Z., Bhatti, M. M., Tripathi, D., Magnetohydrodynamics nanofluid flow containing gyrotactic microorganisms propagating over a stretching surface by successive Taylor series linearization method, Microgravity Sci. Technol., 30 (2018), pp. 445-455.
  11. Khan, M. I., Shah, F., Hayat, T., Alsaedi, A., Transportation of CNTs based nanomaterial flow confined between two coaxially rotating disks with entropy generation, Phys. A: Statist. Mech. Appl., 527 (2019), pp. 121154.
  12. Gireesha, B. J., Kumar, P. B. S., Mahanthesh, B., Shehzad, S. A., Abbasi, F. M., Nonlinear gravitational and radiation aspects in nanoliquid with exponential space dependent heat source and variable viscosity, Microgravity Sci. Technol., 30 (2018), pp. 257-264.
  13. Hayat, T., Javed, S., Khan, M. I., Khan, M. I., Alsaedi, A., Physical aspects of irreversibility in radiative flow of viscous material with cubic autocatalysis chemical reaction, European Phys. J. Plus, 134 (2019), pp. 172.
  14. Matta, A., On the atability of Hadley-flow in a horizontal porous layer with non-uniform thermal gradient and internal heat source, Microgravity Sci. Technol., 31 (2019), pp. 169-175.
  15. Khan, M. I., Shah, F., Waqas, F., Hayat, F., Alsaedi, A., The role of Al2O3-H2O and Al2O3-C2H6O2 nanomaterials in Darcy-Forchheimer stagnation point flow: An analysis using entropy optimization, Int. J. Thermal Sci., 140 (2019), pp. 20-27.
  16. Zhang, Y., Li, Y. R., Yu, J. J., Liu, Q. S., Three-dimensional numerical simulation on Marangoni convection in a sessile water droplet evaporating in its vapor at low pressure, Microgravity Sci. Technol., 31 (2019), pp. 231-240.
  17. Sheikholeslami, M., Saleem, S., Shafee, A., Li, Z., Hayat, T., Alsaedi, A., Khan, M. I., Mesoscopic investigation for alumina nanofluid heat transfer in permeable medium influenced by Lorentz forces, Comput. Method. Appl. Mech. Eng., 349 (2019), pp. 839-858.
  18. Li, D., Wang, S., Wang, Q., Experimental investigation of Buoyant laminar jet diffusion flames in an inverted configuration, Microgravity Sci. Technol., 30 (2018), pp. 877-883.
  19. Khan, M. I., Alsaedi, A., Qayyum, S., Hayat, T., Khan, M. I., Entropy generation optimization in flow of Prandtl--Eyring nanofluid with binary chemical reaction and Arrhenius activation energy, Colloid. Surf. A: Physicochem. Eng. Aspect., 570 (2019), pp. 117-126.
  20. Reddy, J. V. R., Sugunamma, V., Sandeep, N., Thermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slendering stretching surface with slip effects, Alex. Eng. J., 57 (2018), pp. 2465-2473.
  21. Hayat, T., Aslam, N., Khan, M. I., Alsaedi, A., Mixed convective peristaltic flow of Carreau-Yasuda fluid in an inclined symmetric channel, Microsystem Technol., 25 (2018), pp. 609-620.
  22. Das, K., Chakraborty, T., Kundu, P. K., Effect of magnetic field on Oldroyd-B type nanofluid flow over a permeable stretching surface, Propul. Power Resear., 7 (2018), pp. 238-246.
  23. Hayat, T., Rashid, M., Khan, M. I., Alsaedi, A., Physical aspects of MHD nonlinear radiative heat flux in flow of thixotropic nanomaterial, Iranian J. Sci. Technol., Transact. A: Sci., 43 (2019), pp. 2043-2054.
  24. Jafarimoghaddam, A., On the homotopy analysis method (HAM) and homotopy perturbation method (HPM) for a nonlinearly stretching sheet flow of Eyring-Powell fluids, Eng. Sci. Technol., Int. J., 22 (2019), pp. 439-451.
  25. Khan, M. I., Waqas, M., Hayat, T., Alsaedi, A., A comprehensive note on thermally stratified flow and non-Fourier heat flux theory, Thermal Sci., 23 (2019) pp. 3401-3410.
  26. Hsiao, K. L., Heat and mass mixed convection for MHD visco-elastic fluid past a stretching sheet with ohmic dissipation, Commu. Nonlinear Sci. Numer. Simul., 15 (2010) pp. 1803-1812.
  27. Waqas, M., Khan, M. I., Hayat, T., Alsaedi, A., A generalized Fourier and Fick's perspective for stretching flow of burgers fluid with temperature-dependent thermal conductivity, Thermal Sci., 23 (2019) pp. 3425-3432.
  28. Hsiao, K. L., Heat and mass transfer for micropolar flow with radiation effect past a nonlinearly stretching sheet, Heat Mass Transf., 46 (2010) pp. 413-419.
  29. Abbas, Z., Imran M., Naveed M., Hydromagnetic flow of a carreau fluid in a curved channel with non-linear thermal radiation, Thermal Sci., 23 (2019) pp. 3379-3390.
  30. Khan, S. U., Ali, N., Mushtaq, T., Tauf, A., Shehzad, S. A.,Numerical computations on flow and heat transfer of casson fluid due to oscillatory moving surface, Thermal Sci., 23 (2019) pp. 3365-3377.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence