THERMAL SCIENCE

International Scientific Journal

EXPERIMENTAL INVESTIGATION OF SPECIFIC HEAT OF AQUEOUS GRAPHENE OXIDE AL2O3 HYBRID NANOFLUID

ABSTRACT
The specific heat of aqueous graphene+Al2O3 (1:1) hybrid nanofluid was measured using the cooling method. The influence of nanoparticle mass fraction and temperature on the specific heat capacity of the hybrid nanofluids was investigated, the specific heat of the hybrid nanofluid was compared with that of aqueous graphene oxide nanofluid and Al2O3 nanofluid. A fitted formula of the specific heat of the hybrid nanofluid was proposed based on the experimental data. It indicates that the specific heat reduction ratio increases with increase of nanoparticle fraction and the maximum reduction ratio is 7% at 0.15 wt.% at 20°C. The mass fraction of nanoparticle affects the specific heat of hybrid nanofluid more significantly at lower temperature. Temperature impacts the specific heat more distinctly than the nanoparticle fraction. The specific heat increases with temperature and the maximum specific heat reduction ratio of the hybrid nanofluid diminishes from 7% at 20°C to 2% at 70°C at the mass fraction of 0.05%.
KEYWORDS
PAPER SUBMITTED: 2019-04-04
PAPER REVISED: 2019-09-13
PAPER ACCEPTED: 2019-09-18
PUBLISHED ONLINE: 2019-10-06
DOI REFERENCE: https://doi.org/10.2298/TSCI190404381G
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2021, VOLUME 25, ISSUE Issue 1, PAGES [515 - 525]
REFERENCES
  1. Hemmat Esfe M., Hajmohammad M.H., Thermal conductivity and viscosity optimization of nanodiamond - Co 3 O 4 /EG (40:60) aqueous nanofluid using NSGA - II coupled with RSM, Journal of Molecular Liquids , 238 (2017), pp. 545 - 552.
  2. Ganvir R.B., Walke P.V., Heat transfer characteristics in nanofluid - A review, Renewable and Sustainable Energy Reviews , 75 (2017), pp.451 - 460.
  3. Aberoumand S., Jafarimoghaddam A., Tungsten (III) oxide (WO 3 ) - Silver/transformer oil hybrid nanofluid: preparation, stability, thermal conductivity and dielectric strength, Alexandria Engineering Journal , 57 (2018), pp.121 - 130.
  4. Aravind S. S. J., Ramaprabhu S., Graphene - multiwalled carbon nanotube - based nanofluids for improved heat dissipation, RSC Advances , 3 (2013), pp.4199.
  5. Sinz C.K., et al ., Numerical study on turbulent force convective heat transfer of hybrid nanofluid, Ag/HEG in a circula r channel with constant heat flux, Journal of Advanced Research , 24 (2016), pp.1 - 11.
  6. Baby T.T., Ramaprabhu S., Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid, Nanoscale , 3 (2011), pp. 2208 - 2214 .
  7. Chandran M.N., et al ., Novel hybrid nanofluid with tunable specific heat and thermal conductivity: characterization and performance assessment for energy related applications, Energy , 140 (2017), pp. 27 - 39.
  8. Ahammed N., et al ., Entropy generation analysis of graphene - alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler, International Journal of Heat and Mass Transfer , 103(2016), pp.1084 - 1097.
  9. Gao Y. G. , et al . , Measurement and modeling of thermal conductivity of graphene nanoplatelet water and ethylene glycol base nanofluids, International Journal of Heat and Mass Transfer , 123 (2018),pp. 97 - 109.
  10. Sang Lixia, Liu Tai, The enhanced specific heat capacity of ternary carbonates nanofluids with different nanoparticles, Solar Energy Materials and Solar Cells , 169 (2017), pp. 297 - 303.
  11. Hassan Nazir, et al ., Recent developments in phase change materials for energy storage applications: A review, Internation al Journal of Heat and Mass Transfer, 129 (2019), pp. 491 - 523.
  12. Ranga Babu J.A., et al ., State - of - art review on hybrid nanofluids, Renewable and Sustainable Energy Reviews , 77 (2017), pp.551 - 565.
  13. Syam Sundar L., et al ., Hybrid nanofluids preparatio n, thermal properties, heat transfer and friction factor - A review, Renewable & Sustainable Energy Reviews , 68 (2017), pp.185 - 198.
  14. Wang X. Q., Mujumdar A. S., Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sci ences , 46 (2007), pp.1 - 19.
  15. Yarmand H., et al ., Study of synthesis, stability and thermo - physical properties of graphene nanoplatelet/platinum hybrid nanofluid, International Communications in Heat and Mass Transfer ,77 (2016), pp.15 - 21.
  16. Saeedini a M., et al ., Thermal and rheological characteristics of CuO - Base oil nanofluid flow inside a circular tube, International Communications in Heat and Mass Transfer , 39 (2012), pp.152 - 159.
  17. Liu Y. S., Yang Y. Z., Investigation of specific heat and late nt heat enhancement in hydrate salt based TiO 2 nanofluid phase change material, Applied Thermal Engineering , 124 (2017), pp.533 - 538.
  18. Barbes B., et al. , Thermal conductivity and specific heat capacity measurements of Al 2 O 3 nanofluids, Journal of Thermal Analysis & Calorimetry , 111(2012), pp.1615 - 1625.
  19. Zhou S.Q., Ni R., Measurement of the specific heat capacity of water - based Al 2 O 3 nanofluid, Applied Physics Letters , 92(2008), 9, 93123.
  20. Wu Y. Y., et al ., Effect of timeliness on the therm al properties of paraffin - based Al 2 O 3 nanofuids, Modern Physics Letters B , 33 (2019), 1950051.
  21. Nieh H. M., et al ., Enhanced heat dissipation of a radiator using oxide nano - coolant, International Journal of Thermal Sciences , 77 (2014), pp.252 - 261.
  22. Vajjha R.S., Das D.K., Specific heat measurement of three nanofluids and development of new correlations, J. Heat Transfer , 131 (2009), 7, pp.071601 - 071607.
  23. Ho C. J., et al ., Preparation and properties of hybrid water - based suspension of Al 2 O 3 nanop articles and MEPCM particles as functional forced convection fluid, International Communications in Heat and Mass Transfer , 37 (2010) , pp.490 - 494.
  24. Hu Y. W., et al ., Enhanced heat capacity of binary nitrate eutectic salt - silica nanofluid for solar en ergy storage, Solar Energy Materials and Solar Cells ,192 (2019), pp.94 - 102.
  25. Kauffeld M., Gund S., Ice slurry - History, current technologies and future developments, International Journal of Refrigeration , 99 (2019), pp.264 - 271.
  26. Liu Y. D., et al ., Nucleation mechanism of nanofluid drops under acoustic levitation, Applied Therm al Engineering , 130 (2018), pp.40 - 48.
  27. Liu Y. D., et al. , Nucleation rate and supercooling degree of water - based graphene oxide nanofluids, Applied Thermal Engineering , 115 (2017), pp.1226 - 1236.
  28. Liu Y. D., et al ., Containerless nucleation behavior and supercooling degree of acoustically levitated graphene oxide nanofluid PCM, International Journal of Refrigeration , 60 (2015), pp.70 - 80.
  29. Ijam A., et al ., Stability, thermo - physical properties, and electrical conductivity of g raphene oxide - deionized water/ethylene glycol based nanofluid, International Journal of Heat and Mass Transfer , 87 (2015), pp.92 - 103.
  30. Zhang H. Y., et al ., Stability, thermal conductivity, and rheological properties of controlled reduced graphene oxid e dispersed nanofluids, Applied Thermal Engineering , 119 (2017), pp.132 - 139.
  31. Kumar N., et al ., Experimental study of thermal conductivity, heat transfer and friction factor of Al 2 O 3 based nanofluid, International Communications in Heat and Mass Trans fer , 90 (2018), pp.1 - 10.
  32. Xie Y., et al ., The effect of novel synthetic methods and parameters control on morphology of nano - alumina particles, Nanoscale Research Letters , 11 (2016), pp.259.
  33. Haque A. K. M. M, et al ., Forced Convective Heat Transf er of Aqueous Al 2 O 3 Nanofluid Through Shell and Tube Heat Exchanger, J. Nanosci Nanotechnol , 18 (2018), pp.1730 - 1740.
  34. Charab A. A., et al ., Thermal conductivity of Al 2 O 3 + TiO 2 /water nanofluid: Model development and experimental validation, Applied Thermal Engineering , 119 (2017), pp.42 - 51.
  35. Muhammad A., et al ., Sedimentation and Stabilization of Nano - fluids with Dispersant, Colloids and Surfaces A: Physicochemical and Engineering Aspects , 554 (2018), pp.86 - 92.
  36. Said Z., et al ., Energy and ex ergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid, Journal of cleaner production , 133 (2016), pp.518 - 530.
  37. K arol Pralat, Comparison of Electrocalorimetric and Cooling Methods to Determine Specific He at of Aqueous Solutions of the Sodium Salt Carboxymethylcellulose , Arab Journal of Science Engineering , 40 (2015), pp. 34069 - 3415.
  38. Semmar N., et al ., Specific heat of carboxymethyl cellulose and carbopol aqueous solutions, Termochimica Acta , 402(2003) , pp. 225 - 235.
  39. Semmar N., et al. , Analytical expressions of specific heat capacities for aqueous solutions of CMC and CPE, Termochimica Acta, 419(2004), pp. 51 - 58.
  40. Ramaswamy H.S., Zareifard M.R., Evaluation of factors influencing tube - flow flui d - to - particle heat transfer coefficient using a calorimetric technique, Journal of Food Engineering . 45(2000), pp. 127 - 138.
  41. Villano P., et al., Specific heat capacity of lithium polymer battery components, Termochimica Acta , 402 (2003), pp. 219 - 224.
  42. Stoliarov S.I., Walters R.N., Determination of the heats of gasification of polymers using differential scanning calorimetry, Polymer Degradation and Stability , 93 (2008), pp. 422 - 427.
  43. Kato H., Sasaki K., Avoiding error of determining the martensite finish temperature due to thermal inertia in differential scan ning calorimetry: model and experiment of Ni - Ti and Cu - Al - Ni shape memory alloys, Journal of Material Science , 47 (2012), pp. 1399 - 1410.
  44. Kwarciak J., Morawiec H., Some interpretation problems of thermal studies of the reversible martensitic transforma tion, Journal of Material Science , 23 (1988), pp. 551 - 557
  45. Milkereita B., et al., Precipitation kinetics of an aluminium alloy during Newtonian cooling simulated in a differential scanning calorimeter, Termochimica Acta , 522 (2011), pp. 86 - 95.
  46. Kempen A.T.W., et al. , Calibration and desmearing of differential thermal analysis measurement signal upon heating and cooling, Termochimica Acta , 383 (2002), pp. 21 - 30.
  47. Perry, J.H., Chilton, C.H., Chemical Engineers' Handbook . McGraw Hill, New York, 1973.
  48. Xuan Y. M., Li Q., Theory and application of energy transfer in nanofluids , Science Press, Beijing, CHINA, 2010.
  49. Sundar L.S., et al ., Enhanced heat transfer and friction factor of MWCNT - Fe 3 O 4 /water hybrid nanofluids, International Communic ations in Heat & Mass Transfer , 52 (2014), pp.73 - 83.
  50. Ghozatloo A., et al ., Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger, Experimental Thermal and Fluid Science , 53(2014), pp.136 - 141.
  51. Altohamy A. A., et al ., Effect of water based Al 2 O 3 nanoparticle PCM on cool storage performance, Applied Thermal Engineering , 84 (2015), pp.331 - 338.

© 2022 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence