THERMAL SCIENCE

International Scientific Journal

ENTANGLEMENT OF THERMAL STATE OF QUANTUM ANNEALING PROCESSOR

ABSTRACT
We investigate the dynamics of quantum correlations between the quantum annealing processor nodes. The quantum annealing processor is simulated by spin-chain model. It is assumed that system started from the thermal state. The Hamiltonian of the system is mathematically designed and analytically solved. The properties of the system are investigated. Negativity is used to investigate the dynamics of quantum correlation between the system nodes. The effect of the system parameters (spin-orbit coupling, coupling constant, and bias parameter) on the dynamics of negativity is explored. Results showed that the coupling constant had a great effect in the dynamics of the quantum correlation.
KEYWORDS
PAPER SUBMITTED: 2020-04-15
PAPER REVISED: 2020-06-20
PAPER ACCEPTED: 2020-06-28
PUBLISHED ONLINE: 2020-10-25
DOI REFERENCE: https://doi.org/10.2298/TSCI20S1325A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2020, VOLUME 24, ISSUE Supplement 1, PAGES [S325 - S332]
REFERENCES
  1. Johnson, M., et al., Quantum Annealing with Manufactured Spins, Nature, 473 (2011), May, pp. 194-198
  2. Li, R. Y., et al., Quantum Annealing vs. Classical Machine Learning Applied to a Simplified Computational Biology Problem, NPJ Quantum Inf., 4 (2018), 14
  3. Vinci, W., et al., Nested Quantum Annealing Correction, NPJ Quantum Inf., 2 (2016), 16017
  4. DiCarlo, L., et al., Demonstration of Two-Qubit Algorithms with a Superconducting Quantum Processor, Nature, 460 (2009), June, pp. 240-244
  5. Abdel-Aty, A.-H., et al., Thermal Entanglement in Quantum Annealing Processor, International Journal of Quantum Information, 16 (2018), 1850006
  6. Owyed, S., et al., Mathematical Modelling and Simulation of 3-Qubits Quantum Annealing Processor, Proceedings, 2nd International Conference on Mathematics and Statistics (ICoMS'19), Association for Computing Machinery, New York, USA, 2019, pp. 14-18
  7. Fukuhara, T., et al., Microscopic Observation of Magnon-Bound States and Their Dynamics, Nature, 502 (2013), Sept., pp. 76-79
  8. Furukawa, S., et al., Chiral Order and Electromagnetic Dynamics in 1-D Multiferroic Cuprates, Phys. Rev. Lett., 105 (2010), 257205
  9. Bunyk, P. I., et al., Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor, IEEE Transactions on Applied Superconductivity, 24 (2014), 4, 1700110
  10. Boyda, E., et al., Deploying a Quantum Annealing Processor to Detect Tree Cover in Aerial Imagery of California, PLoS ONE, 12 (2017), e0172505
  11. Boixo, S., et al., Evidence for Quantum Annealing with More than one Hundred Qubits, Nature Phys, 10, (2014), Feb., pp. 218-224
  12. Mishra, A., et al., Performance of Two Different Quantum Annealing Correction Codes, Quantum Inf Process, 15 (2016), 2, pp. 609-636
  13. Homid, A. H., et al., Efficient Realization of Quantum Search Algorithm Using Quantum Annealing Processor with Dissipation, Journal Opt. Soc. Am. B, 32 (2015), 9, pp. 2025-2033
  14. Zidan, M., et al., Low-Cost Autonomous Perceptron Neural Network Inspired by Quantum Computation, AIP Conference Proceedings, 1905 (2017), 020005
  15. Michler, P., et al., Quantum Correlation among Photons from a Single Quantum Dot at Room Temperature, Nature, 406 (2000), Aug., pp. 968-970
  16. Inoue, S., et al., Quantum Correlation between Longitudinal-Mode Intensities in a Multimode Squeezed Semiconductor Laser, Phys. Rev. A, 46 (1992), 2757
  17. Ge, R., et al., Quantum Correlation and Classical Correlation Dynamics in the Spin-Boson Model, Phys. Rev. A, 81 (2010), 064103
  18. Yin, J., et al., Satellite-Based Entanglement Distribution over 1200 kilometers, Science, 356 (2017), 6343, pp. 1140-1144
  19. Yin, J., et al., Satellite-to-Ground Entanglement-Based Quantum Key Distribution, Phys. Rev. Lett., 119 (2017), 200501
  20. Li, X., et al., Perfect Quantum State Transfer in a Superconducting Qubit Chain with Parametrically Tunable Couplings, Phys. Rev. Applied, 10 (2018), 054009
  21. Kumar, S., et al., Towards Long-Distance Quantum Networks with Superconducting Processors and Optical Links, Quantum Sci. Technol., 4 (2019), 045003
  22. Lanting, T., et al., Entang in a Quantum Annealing Processor, Phys. Rev., X4 (2014), May, 021 041
  23. Wootters, W. K., Entanglement of Formation of an Arbitrary State of Two Qubits, Phys. Rev. Lerr., 80 (1988), Mar., 2245
  24. Abdalla, M.-S., et al., Degree of Entanglement for Anisotropic Coupled Oscillators Interacting with a Single Atom, Journale Opt. B: Quantum Semiclass. Opt., 4 (2002), Oct., 396
  25. Gunlycke, D., et al., Thermal Concurrence Mixing in a One-Dimensional Ising Model, Phys. Rev. A, 64 (2001), Sept, 0432302
  26. Childs, A. M., Asymptotic Entanglement Capacity of the Ising and Anisotropic Heisenberg Interactions, Quantum Inf. Comput., 3 (2003), 97
  27. Wang, X., Thermal and Ground-State Entanglement in Heisenberg XX Qubit Rings, Phys. Rev. A, 66 (2002), 034302
  28. Wang, X., Entanglement in the Quantum Heisenberg XY Model, Phys. Rev. A, 64 (2001), 012313
  29. Arnesen, M. C., et al., Natural Thermal and Magnetic Entanglement in the 1-D Heisenberg Model, Phys. Rew. Lett., 87 (2001), 017901
  30. Li, D.-C., et al., Thermal Entanglement in the Anisotropic Heisenberg XXZ Model with the Dzyaloshinskii-Moriya Interaction, Journal Phys.: Condens. Matter, 20 (2008), 325229
  31. Xi, X., Pairwise Thermal Entanglement in the n-Qubit Heisenberg XX Chain, Phys. Lett. A, 300 (2002), 567
  32. Rigolin, G.,Thermal Entanglement in the Two-Qubit Heisenberg XY Z Model, Int. J. Quant. Inf., 2 (2004) 393
  33. Hu, Z.-N., et al., Thermal Entanglement of a Three-Qubit System in Homogeneous Magnetic Fields, Journal Phys. A: Math. Theor., 40 (2007), 26, 7283
  34. Dzialoshinski, I., A Thermodynamic Theory of Weak Ferromagnetics, Journal Phys. Chem. Solida, 4, (1958), 4, pp. 241-255
  35. Moriya, T., Anistropic Superexchange Interaction and Weak Ferromagnetism, Phys. Rev. Lett., 120 (1960) 91
  36. Zhang, G. F., Li, S. S., Thermal Entanglement in a Two-Qubit Heisenberg XXZ Spin Chain under an Inhomogeneous Magnetic Field, Phys. Rev. A, 72 (2005), 034302
  37. Gu, S. J., et al., Universal Behaviors of Mutual Information in 1-D Model, Phys. Rev. A, 68 (2003), 042330
  38. Albayrak, E., Thermal Entanglement in the Anisotropic Heisenberg Model with Dzyaloshinskii-Moriya Interaction in an Inhomogeneous Magnetic Field, Eur. Phys. B, 72 (2009), 491
  39. Ercolessi, E., et al. Exact Entanglement Entropy of the XYZ Model and Its Sine-Gordon Limit, Phys. Lett. A, 374 (2010), 2101
  40. Zhou, L., et al., Enhanced Thermal Entanglement in an Anisotropic Heisenberg XYZ Chain, Phys. Rev. A, 68 (2003), 024301
  41. Redwan, A., et al., Dynamics of Classical and Quantum Information on Spin-chains with Multiple Interactions, Inf. Sci. Lett., 7 (2018), 2, pp. 29-33
  42. Redwan, A., et al., Dynamics of the Entanglement and Teleportation of Thermal State of a Spin Chain with Multiple Interactions, Chaos, 29 (2019), 013138
  43. Salah, R., et al., Pancharatnam Phase of Two Two-Level Atoms Interacting with a Time-Dependent Cavity Field, Inf. Sci. Lett., 8 (2019), 2, pp. 41-50
  44. Abdel-Aty, A.-H., et al., Effect of the Spin-Orbit Interaction on Partial Entangled Quantum Network, Lecture Notes in Electrical Engineering, 285 (2014), 529
  45. Abdel-Aty, A.-H., et al., Quantum Network Via Partial Entangled State, Journal of Communications, 9 (2014), 379
  46. Abdel-Aty, A., et al., Characteristics and Distinctive Features of Entanglement in Superconducting Charge Gubits, in: Quantum Entanglement, Nova Science Publishers Inc., New York, USA, 2012, pp. 199-243
  47. Abdel-Aty, A.-H., et al., Entanglement and Teleportation Via Partial Entangled-State Quantum Network, Journal of Computational and Theoretical Nanoscience, 12 (2015), 2213
  48. Shannon, C. E., A Mathematical Theory of Communication, Bell System Technical Journal, 27 (1984), July, pp. 379-423
  49. Eisert, J., Entanglement in Quantum Information Theory, Ph. D. thesis, University of Potsdam, Brandenburg, Germany, 2001
  50. Simon, R., Peres-Horodecki Separability Criterion for Continuous Variable Systems, Physical Review Letters, 84 (2000), Mar. 2726-2729
  51. Vidal, G., Werner, R. F., Computable Measure of Entanglement, Phys. Rev. A, 65 (2002), 032314

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence