THERMAL SCIENCE

International Scientific Journal

APPLICATION OF LOCAL MESHLESS METHOD FOR THE SOLUTION OF TWO TERM TIME FRACTIONAL-ORDER MULTI-DIMENSIONAL PDE ARISING IN HEAT AND MASS TRANSFER

ABSTRACT
In this article, we presented an efficient local meshless method for the numerical treatment of two term time fractional-order multi-dimensional diffusion PDE. The demand of meshless techniques increment because of its meshless nature and simplicity of usage in higher dimensions. This technique approximates the solu­tion on set of uniform and scattered nodes. The space derivatives of the models are discretized by the proposed meshless procedure though the time fractional part is discretized by Liouville-Caputo fractional derivative. The numerical re­sults are obtained for 1-, 2- and 3-D cases on rectangular and non-rectangular computational domains which verify the validity, efficiency and accuracy of the method.
KEYWORDS
PAPER SUBMITTED: 2020-04-15
PAPER REVISED: 2020-05-29
PAPER ACCEPTED: 2020-06-01
PUBLISHED ONLINE: 2020-10-25
DOI REFERENCE: https://doi.org/10.2298/TSCI20S1095A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2020, VOLUME 24, ISSUE Supplement 1, PAGES [S95 - S105]
REFERENCES
  1. Kelly, J. F., et al., Analytical Time-Domain Green's Functions for Power-Law Media, Journal Acoust. Soc. Am., 124 (2008), 5, pp. 286128-72
  2. Lubich, C., Discretized Fractional Calculus, SIAM J. Math. Anal, 17 (1986), 3, pp. 704-719
  3. Ahmad, H., Khan, T. A., Variational Iteration Algorithm i with an Auxiliary Parameter for the Solution of Differential Equations of Motion for Simple and Damped Mass-Spring Systems, Noise Vib Worldw, 51 (2020), 1-2, pp. 12-20
  4. Rafiq, M., et al., Variational Iteration Method with an Auxiliary Parameter for Solving Volterra's Population Model, Non-linear Sci. Lett. A, 8 (2017), 4, pp. 389-396.
  5. Bekir, A., et al., Applications of Fractional Complex Transform and G′/G-expansion method for time-fractional differential equations, Journal Appl. Anal. Comput., 6 (2016), Jan., pp. 131-144
  6. Ahmad, H., et al., Variational Iteration Algorithm-i with an Auxiliary Parameter for Solving Boundary Value Problems, Earthline J. Math. Sci., 3 (2020), 2, pp. 229-247
  7. Ahmad, I., et al., Local Meshless Differential Quadrature Collocation Method for Time-Fractional PDE, Discrete Cont Dyn-S, 13 (2020), 10, pp. 2641-2654
  8. Partohaghighi, M., et al., Ficitious Time Integration Method for Solving the Time Fractional Gas Dynamics Equation, Thermal Science, 23 (2019), Suppl. 6, pp. S2009-S2016
  9. El-Dib, Y., Stability Analysis of a Strongly Displacement Time-Delayed Duffing Oscillator Using Multiple Scales Homotopy Perturbation Method, Journal Appl. Comput. Mech., 4 (2018), 4, pp. 260-274
  10. Jena, R. M., et al., Dynamic Response Analysis of Fractionally Damped Beams Subjected to External Loads Using Homotopy Analysis Method, Journal Appl. Comput. Mech., 5 (2019), 2, pp. 355-366
  11. Li, C., Wang, Y., Numerical Algorithm Based on a Domian Decomposition for Fractional Differential Equations, Comput. Math. with Appl., 57 (2009), 10, pp. 1672-1681
  12. Bisheh-Niasar, M., Ameri, A. M., Moving Mesh Non-Standard Finite Difference Method for Non-Linear Heat Transfer in a Thin Finite Rod, Journal Appl. Comput. Mech., 4 (2018), 3, pp. 161-166
  13. Ahmad, H., Khan, T. A., Variational Iteration Algorithm-i with an Auxiliary Parameter for Wave-Like Vibration Equations, Journal Low Freq Noise V A, 38 (2019), 3-4, pp. 1113-1124
  14. Jassim, H. K., Baleanu, D., A Novel Approach for Korteweg-de Vries Equation of Fractional Order, Journal Appl. Comput. Mech., 5 (2019), 2, pp. 192-198
  15. Ahmad, H., Variational Iteration Method with an Auxiliary Parameter for Solving Differential Equations of the Fifth Order, Non-Linear Sci. Lett. A, 9 (2018), Mar., pp. 27-35
  16. Inc, M., et al., Modified Variational Iteration Method for Straight Fins with Temperature Dependent Thermaconductivity, Thermal Science, 22 (2018), Suppl. 1, pp. S229-S236
  17. Kilicman, A., et al., Analytic Approximate Solutions for Fluid-Flow in the Presence of Heat and Mass Transfer, Thermal Science, 22 (2018), Suppl. 1, pp. S259-S264
  18. Kucukarslan-Yuzbasi, Z., et al., On Exact Solutions for New Coupled Non-Linear Models Getting Evolution of Curves in Galilean Space, Thermal Science, 23 (2019), Suppl. 1, pp. S227-S233
  19. Akgul, A., et al., New Method for Investigating the Density-Dependent Diffusion Nagumo Equation, Thermal Science, 22 (2018), Suppl. 1, pp. S143-S152
  20. Inc, M., et al., Modified Variational Iteration Method for Straight Fins with Temperature Dependent Thermal Conductivity, Thermal Science, 22 (2018), Suppl. 1, pp. S229-S236
  21. Ahmad, I., et al., Numerical Simulation of Partial Differential Equations Via Local Meshless Method, Symmetry, 11 (2019), 257
  22. Oguntala, G., Abd-Alhameed, R., Thermal Analysis of Convective-Radiative Fin with Temperature-Dependent Thermal Conductivity Using Chebychev Spectral Collocation Method, Journal Appl. Comput. Mech., 4 (2018), 2, pp. 87-94
  23. Wendland, H., Approximation Scattered Data, Press Cambridge University, Cambridge, UK, 2005
  24. Ahmad, I., et al., An Efficient Local Formulation for Time-Dependent PDE, Mathematics, 7 (2019), 216
  25. Siraj-ul-Islam, Ahmad, I., A Comparative Analysis of Local Meshless Formulation for Multi-Asset Option Models, Eng. Anal. Bound. Elem., 65 (2016), Apr., pp. 159-176
  26. Ahmad, I., et al., Numerical Simulation of PDE by Local Meshless Differential Quadrature Collocation Method, Symmetry, 11 (2019), 394
  27. Caputo, M., Linear Models of Dissipation whose Q is almost Frequency Independent-II, Geophys. J. Int., 13 (1967), 5, pp. 529-539
  28. Qiao, L., Xu, D., Orthogonal Spline Collocation Scheme for the Multi-Term Time-Fractional Diffusion Equation, Int. J. Comput. Math., 95 (2018), 8, pp. 1478-1493
  29. Hussain, M., Haq, S., Weighted Meshless Spectral Method for the Solutions of Multi-Term Time Fractional Advection-Diffusion Problems Arising in Heat and Mass Transfer, Int. J. Heat Mass Transf., 129 (2019), Feb., pp. 1305-1316

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence