THERMAL SCIENCE
International Scientific Journal
NEW INSIGHT INTO THE FOURIER-LIKE AND DARCY-LIKE MODELS IN POROUS MEDIUM
ABSTRACT
In this study, we propose the general calculus operators based on the Richardson scaling law and Korcak scaling law. The Richardson-scaling-law calculus is considered to investigate the Fourier-like law for the scaling-law flow of the heat in the heat-transfer process. The Korcak-scaling-law calculus is used to model the Darcy-like law for describing the scaling-law flow of the fluid in porous medium. The formulas are as the special cases of the topology calculus proposed for descriptions of the fractal scaling-law behaviors in nature phenomena.
KEYWORDS
PAPER SUBMITTED: 2019-05-12
PAPER REVISED: 2020-01-12
PAPER ACCEPTED: 2020-01-25
PUBLISHED ONLINE: 2020-11-27
THERMAL SCIENCE YEAR
2020, VOLUME
24, ISSUE
Issue 6, PAGES [3847 - 3858]
- Nagaosa, N., et al., Anomalous Hall Effect, Reviews of Modern Physics, 82 (2010), 2, Article ID 1539
- Ide, S., et al., A Scaling Law for Slow Earthquakes, Nature, 447 (2007), 7140, pp.76-79
- Zhang, K., et al., A Universal Scaling Law between Gray Matter and White Matter of Cerebral Cortex, Proceedings of the National Academy of Sciences, 97 (2000), 10, pp. 5621-5626
- Wang, J., et al., A Scaling Law for Properties of Nano-structured Materials, Proceedings of the Royal Society A, 462 (2006), 2069, pp.1355-1363
- Barenblatt, G. I., et al., Scaling Laws for Fully Developed Turbulent Shear Flows. Part 2. Processing of Experimental Data, Journal of Fluid Mechanics, 248 (1993), 1, pp. 521-529
- Nakamura, T., et al.,Universal Scaling Law in Human Behavioral Organization, Physical Review Letters, 99 (2007), 13, Article ID 138103
- Mandelbrot, B., How Long is the Coast of Britain? Statistical Self-similarity and Fractional Dimension, Science, 156 (1967), 3775, pp. 636-638
- Richardson, L., F., Atmospheric Diffusion Shown on a Distance-Neighbour Graph, Proceedings of the Royal Society A, 110 (1926), 756, pp. 709-737
- Korcak, J., Geopolitické základy Československa. Jeho kmenové oblasti (The Geopolitic Foundations of Czechoslovakia. Its Tribal Areas), Prague, Orbis, 1938
- West, G. B., et al., The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms, Science, 284 (1999), 5420, pp. 1677-1679
- Yang, X. J., New Non-Cconventional Methods for Quantitative Concepts of Anomalous Rheology, Thermal Science, 23 (2019), 6B, pp. 4117-4127
- Leibniz, G. W. Memoir Using the Chain Rule, 1676
- Stieltjes, T. J. Recherches Sur les Fractions Continues, Comptes Rendus de l'Académie des Sciences Series I -Mathematics, 118 (1894), 1894, pp. 1401-1403
- Riemann, B., Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Dieterich, Gottingen, 1867
- Yang, X. J., Theory and Applications of Special Functions for Scientists and Engineers, Springer Nature, New York, USA, 2021
- Albash, T., et al., Temperature Scaling Law for Quantum Annealing Optimizers, Physical Review Letters, 119 (2017), 11, Article ID 110502
- Grunau, D. W., et al., Domain Growth, Wetting, and Scaling in Porous Media, Physical Review Letters, 71 (1993), 25, Article ID 4198
- Laplace, P. S. (1782). Théorie des Attractions des Sphéroïdes et de la Figure des Planètes. Mémoires de l'Académie Royale des Sciences, 1782, pp. 113-196
- Fourier, J. B. J., Théorie Analytique de la Chaleur, Didot, Paris, 1822
- Darcy, H. P. G., Les Fontaines publiques de la ville de Dijon, Dalmont, Paris, 1856