International Scientific Journal

Authors of this Paper

External Links


In this study, we propose the general calculus operators based on the Richardson scaling law and Korcak scaling law. The Richardson-scaling-law calculus is considered to investigate the Fourier-like law for the scaling-law flow of the heat in the heat-transfer process. The Korcak-scaling-law calculus is used to model the Darcy-like law for describing the scaling-law flow of the fluid in porous medium. The formulas are as the special cases of the topology calculus proposed for descriptions of the fractal scaling-law behaviors in nature phenomena.
PAPER REVISED: 2020-01-12
PAPER ACCEPTED: 2020-01-25
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2020, VOLUME 24, ISSUE Issue 6, PAGES [3847 - 3858]
  1. Nagaosa, N., et al., Anomalous Hall Effect, Reviews of Modern Physics, 82 (2010), 2, Article ID 1539
  2. Ide, S., et al., A Scaling Law for Slow Earthquakes, Nature, 447 (2007), 7140, pp.76-79
  3. Zhang, K., et al., A Universal Scaling Law between Gray Matter and White Matter of Cerebral Cortex, Proceedings of the National Academy of Sciences, 97 (2000), 10, pp. 5621-5626
  4. Wang, J., et al., A Scaling Law for Properties of Nano-structured Materials, Proceedings of the Royal Society A, 462 (2006), 2069, pp.1355-1363
  5. Barenblatt, G. I., et al., Scaling Laws for Fully Developed Turbulent Shear Flows. Part 2. Processing of Experimental Data, Journal of Fluid Mechanics, 248 (1993), 1, pp. 521-529
  6. Nakamura, T., et al.,Universal Scaling Law in Human Behavioral Organization, Physical Review Letters, 99 (2007), 13, Article ID 138103
  7. Mandelbrot, B., How Long is the Coast of Britain? Statistical Self-similarity and Fractional Dimension, Science, 156 (1967), 3775, pp. 636-638
  8. Richardson, L., F., Atmospheric Diffusion Shown on a Distance-Neighbour Graph, Proceedings of the Royal Society A, 110 (1926), 756, pp. 709-737
  9. Korcak, J., Geopolitické základy Československa. Jeho kmenové oblasti (The Geopolitic Foundations of Czechoslovakia. Its Tribal Areas), Prague, Orbis, 1938
  10. West, G. B., et al., The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms, Science, 284 (1999), 5420, pp. 1677-1679
  11. Yang, X. J., New Non-Cconventional Methods for Quantitative Concepts of Anomalous Rheology, Thermal Science, 23 (2019), 6B, pp. 4117-4127
  12. Leibniz, G. W. Memoir Using the Chain Rule, 1676
  13. Stieltjes, T. J. Recherches Sur les Fractions Continues, Comptes Rendus de l'Académie des Sciences Series I -Mathematics, 118 (1894), 1894, pp. 1401-1403
  14. Riemann, B., Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Dieterich, Gottingen, 1867
  15. Yang, X. J., Theory and Applications of Special Functions for Scientists and Engineers, Springer Nature, New York, USA, 2021
  16. Albash, T., et al., Temperature Scaling Law for Quantum Annealing Optimizers, Physical Review Letters, 119 (2017), 11, Article ID 110502
  17. Grunau, D. W., et al., Domain Growth, Wetting, and Scaling in Porous Media, Physical Review Letters, 71 (1993), 25, Article ID 4198
  18. Laplace, P. S. (1782). Théorie des Attractions des Sphéroïdes et de la Figure des Planètes. Mémoires de l'Académie Royale des Sciences, 1782, pp. 113-196
  19. Fourier, J. B. J., Théorie Analytique de la Chaleur, Didot, Paris, 1822
  20. Darcy, H. P. G., Les Fontaines publiques de la ville de Dijon, Dalmont, Paris, 1856

© 2023 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence