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In this study, we propose the general calculus operators based on the Richardson
scaling law and Korcak scaling law. The Richardson-scaling-law calculus is con-
sidered to investigate the Fourier-like law for the scaling-law flow of the heat in
the heat-transfer process. The Korcak-scaling-law calculus is used to model the
Darcy-like law for describing the scaling-law flow of the fluid in porous medium.
The formulas are as the special cases of the topology calculus proposed for de-
scriptions of the fractal scaling-law behaviors in nature phenomena.
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Introduction

The scaling law is a mathematical relationship, which is used to describe the complex
behaviors in the nature phenomena, for instance, anomalous Hall effect [1], slow earthquakes
[2], grey matter and white matter of cerebral cortex [3], nano-structured materials [4], turbulent
shear flows [5], and human behavioral organization [6].

Let us recall the scaling laws as follows. The Mandelbrot scaling law, proposed by
Mandelbrot in 1967, is presented as follows [7]:

p()=x1"" (1)

where x €(0,+0), t €(0,+0), and D €(0,+o) is the fractal dimension. The Richardson
scaling law, coined by Richardson in 1926 [8], is given:

w(t)=xt” (2)

where x € (0,+©), t € (0,40), and D € (0,+) is the scaling exponent. The Korcak scaling
law, suggested by Korcak in 1938 [9]:

o(t)=xt™" (3)
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where x € (0,4m), t € (0,+), and D € (0,+0) is the scaling exponent. The scaling law in life,
presented by West et al. in 1999 [10], reads:

g0y =xt” Q)]
where x € (0,+00) is the normalization constant, ¢ € (0,+0), and D € (—o0,40) is the scaling
exponent. In the mathematics, the complex topology can be expressed by the scaling-law func-
tion, e. g.:

o(1) =xt" +c (5)
where x €(0,40) is the normalization constant, f € (—o,+) is the scaling exponent,
¢ € (—o0,4m) is the constant, and ¢ € (—o0,+) is the radius. The topology calculus was pro-
posed in [11] based on the Leibniz derivative [12], Stieltjes integral (or Stieltjes-Riemann inte-
gral) [13] and Riemann integral [14] (for more details, see [15]). The topology calculus was
proposed in [15].

Due to the scaling-law behaviors in the temperature scaling law [16] and in the porous
media [17], the main targets of the present paper are to propose the general calculus operators
containing the Richardson scaling law and Korcak scaling law, and to consider the Fourier-like
law for the scaling-law flow of the heat in the heat-transfer process and Darcy-like law for the
scaling-law flow of the fluid in porous medium.

The general calculus operators involving the
Richardson scaling law and Korcak scaling law

In this section, we propose the Richardson-scaling-law calculus and the Korcak-
-scaling-law calculus and discuss their properties based on the topology calculus.

Let R(®D) be the set of the continuous functions @ (@) in the domain 4 and let I(p) be
the set of the continuous derivatives of the functions ¢(¢) in the domain B.

Let @, (1) = (P o p)(1) = P[p(1)]-
Let us consider the sets of the composite functions, given:

R@,)={®,(1): D, (1) = (P )(t), DPeN(p), DeI(D), peI(p)] (6)

The topology calculus
Let ®, e R(D,,), where (1) = xt? +c.
The topology derivative of the function @ ,(¢) is defined as [15]:
1 do,(2)
1
(K'l‘ﬁ +c)() dr

where « is the normalization constant, £ is the scaling exponent, ¢ is the radius, and c is the
moving term.
The topology partical derivatives of the function @, = @ (x, y,z) are defined:
T — L 9% g - 1 @y g | i
x Ve B Q) ’ y e B (O] ’ x e B (@)
(kx” +¢)" ox (xy” +c)) Oz (kz” +¢)") Oz

PP, (1) = (7)

(T, )= oD, T (ToVw, )= TaRe,, "o (Tl e, )= Tole

y 4 x
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TaM) (TH(1) — T'r(2) A (TH(M — T'r(2) T (TH(1) — T2
(V) = "0, 20V, = a20,, 8"V, = 020,

"800l ) =00, 0V (0V,) = 2D, and 000 ) = "6,
The topology differential of the function @ ,(¢), denoted by d® ,(¢), is given:
d®, () = (xt” + )V 'DVD , (1)dt (8)
Let ®, e R(®,,), where o(7) = xt? +c.
The topology integral of the function ®,,(¢) is defined [15]:
t
"1, (1) = j 0, ") (xt” +c)Vdt )

where x is the normalization constant, f is the scaling exponent, ¢ is the radius, and c is the
moving term.
The indefinite topology integral of the function ® ,(¢) is defined [15]:

10, (1) = j 0, (1)(xt” +c)"dt (10)

where « is the normalization constant, £ is the scaling exponent, 7 is the radius, and c is the
moving term.

Let ©, eiﬂ(d%) and I1, e R(D,,). '

The properties of the topology calculus can be given:

(A1) The sum and difference rules for the topology derivative:

D6, +11,(1]="DPe, )+ "DV, (1) (11)
(A2) The constant multiple rule for the topology derivative:

"D[ce,m]=Cc"D"e, 1) (12)

where C is a constant;
(A3) The product rule for the topology derivative [15]:

T [(9(,, (t)- Hq,(t)] =11,(1) "D ©, (1) +©,(t) "D T1,,(¢) (13)

(A4) The quotient rule for the topology derivative [15]:

) {% (t)} _I,0"D"0,1-0,0 D 11, .
I, (¢) I, (1) T1,,(t)
where T, (r)=0.
(AS5) The chain rule for the topology derivative:
"D {w[ 0,1 ] =w"®,)- D" 0, (15)

where w"(©,) = dw(®,,)/d®,, exists.
(A6) The first fundamental theorem of the topology integral:

0,()-0,(@= 1" "D 0,1 ] (16)
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(A7) The mean value theorem for the topology integral:

10,0 =0,()[et) - p(a)] (17)

where a </<t.
(A8) The second fundamental theorem of the topology integral:

0,0 ="D"[11"e,] (18)
(A9) The net change theorem for the topology integral:
0,(1)-0,@= 11" "D 0,0 (19)
(A10) The integration by parts for the topology integral [15]:
1010, "DV 11,0 |=0,() 11,(1) -0, () T, () 11 [0, "DV 11, ()] 20)

(A11) The topology integral for the composite function:

T "p® {w[®¢(t):|}dt = Tw“’(@)(p)- "M e, (x)dr 1)

(A12) The second fundamental theorem of the topology integral:
©,)="D" [th“)@(p (z)] (22)
(A13) The net change theorem for the topology integral:
I TD0 8,0 ]=0,1n+C (23)
(A14) The integration by parts for the topology integral [15]:
T [@w ) "D Hw(t)J =0, (1) 1,0~ "1 [@)q, ) "D Hq,(t)J (24)
(A15) The topology integral for the composite function:
j w"(®,)- "D, (1dr=w[®,(1)]+C (25)
where C is the constant.

The Richardson-scaling-law calculus

Let ®, e R(D,,), where y (1) = xt?.

The Richardson-scaling-law derivative of the function @, () is defined:
(-0 4o, (1)

Dk dt
where x is the normalization constant, D is the scaling exponent, and ¢ is the radius.

The Richardson-scaling-law partical derivatives of the function ®,, =®,, (x, y,z) are
defined:

BtpPo, (1) = (26)

1-D 1-D 1-D
RSLaECI)cDW 1 oo, RSLAO gy - 1P oo, ’ RSL(?S)(D it oo,

Dk ox YV Dxooy V" Dk oz
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RSL A(1) [ RSL A(1) _ RSL A(2) RSL A(1) [ RSL A(1) __ RSL A(2)
o[ MV, |= P, Bl [ Male, |= S,
RSL A(1) [ RSL A(1 _ RSL A(2)
o[ rele, |= "o,
RSL A(1) [ RSL A(1) _ RSL A(2) RSL A(1) [ RSL A(1) _ RSL A(2)
V[, |= P, Mol Fole, [= o,
RSL A(1) [ RSL A(1) __ RSL A(2)
o [ o\ %]— Do,
RSL A(1) [ RSL A(1 _ RSL A(2) RSL A(1) [ RSL A(1) _ RSL A(2)
o[l |= "R, "ol Mol |=Molw,

and
RSL A1) [ RSL A(1) _ RSLA(2)
o[ oo, |="olo,
The Richardson-scaling-law differential of the function ®,, (¢), denoted by d®,, (¢), is
given:

d®,, (1) = Dt B'DO®, (1) dt (27)
Let ©, € R(®,,), where (1) = xt”.
The Richardson-scaling-law integral of the function ©,,(¢) is defined:

t
BLIOG, (1) = j ®, (t)Dxt"dt (28)

where x is the normalization constant, D is the scaling exponent, and ¢ is the radius.
The indefinite Richardson-scaling-law integral of the function ©,,(¢) is defined:

BLIO, (1) = j ®, (t)Dxt"dr (29)

where x is the normalization constant, D is the scaling exponent, and ¢ is the radius.
Let ®, e R(D,, ) and IT, e R(D,).
The properties of the Richardson-scaling-law calculus can be given:
(B1) The sum and difference rules for the Richardson-scaling-law derivative:

BpOdle, n+1, 0] =""pPe, )+ D1, 1) (30)
(B2) The constant multiple rule for the Richardson-scaling-law derivative:
“phce, ) ]=c D, 1) (31)

where C is a constant;
(B3) The product rule for the Richardson-scaling-law derivative [15]:

“ple, (-1, ()] =1, D" e, +e, ) DI, (1) (32)
(B4) The quotient rule for the Richardson-scaling-law derivative:

rspyn| @ |_ T, O ¥tphe, (-, o1, )
L, M, (011, (1)

(14)

where I, (1)=0.
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(B5) The chain rule for the Richardson-scaling-law derivative:
BpOw[e, )]} =w"@®,) - *DL e, ) (33)

where w(©,) =dw(®,) /d®,, exists.
(B6) The first fundamental theorem of the Richardson-scaling-law integral:

0,(n-0,(@="%1""D"e, ) (34)
(B7) The mean value theorem for the Richardson-scaling-law integral:

BLIOO, (=0, D[y (®) -y (a)] (35)

where a</<t.
(B8) The second fundamental theorem of the Richardson-scaling-law integral:

0,0 =""D"[ *i1"e, 1] (36)

(B9) The net change theorem for the Richardson-scaling-law integral:
0, 1)-0,(@)="11"[ *'DPe,®] (37)

(B10) The integration by parts for the Richardson-scaling-law integral:
Mi10(e, (0™ o1, (H)]=0, ()11, (H)-06, ()11, (a)- *11"[e, () *D1 11, ()] 69

(B11) The Richardson-scaling-law integral for the composite function:

b b
[P {w[e, o ]d=[w"©,)- "D 6, (t)dt (39)

(B12) The second fundamental theorem of the Richardson-scaling-law integral:

0, = RSL p(1) |:RSL1t(1)®W (t)] (40)

(B13) The net change theorem for the Richardson-scaling-law integral:
RSL]t(l) ':RSLD,(I) ®u/ (t):l — @W (Z) +C (41)

(B14) The integration by parts for the Richardson-scaling-law integral:
Bole, o™ pdn,w]=e, -0, -""1"[e,n ™" n,n] @)

(B15) The Richardson-scaling-law integral for the composite function:
jw“) ©,) - *'D"e,nd=w[e,@n]+C (43)

where C is the constant.
The basic formulas for the Richardson-scaling-law calculus can be given:

RSLDt(l)l — 0’ RSLD;I)(KZD) — 1’ RSLDt(l)(KtD)n — n(KtD)n_l (44a,b,C)

D D 1 D D
RSLDt(l)eKt — ek‘t , RSLDt(l) ln(KtD) — =, RSLDt(l)SKt — (11’1 S)SKZ‘ (453,b,c)
Kt
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RSLDt(l) logs (KtD) — D;’ RSLDt(l)e@,/, (1) — e@,/, (1) RSLDt(l)®W (t) (46a,b)
xt" Ins
RSL (1) RSL (1)

DYe (1 DY, (1
BEpWne, () = ’—*”(), DU log, @, (1) = _be,0 (47a,b)

0, (1) (Ins)®,, (1)
RSL (1 € () = [(lns)se)"’(t)} &tpe, (1), MHIO1=xtP+C (48a,b)

08, (1)

RSL y(1) D\n-11]_ . D RSL (1)
1 Kt =[xt"]" +C, 1
Oy =[x ! { 510,

} =log,©,(N+C  (49ab)

RSLT® (szlnm’))w, RSLT® ! 1 =log, (kt”)+C (50a,b)
xt? (Ins )

RSLIt(l) [(ln S)SKtD :| — SKtD + C, RSLIt(l) |:C®W (t) RSLDt(l)®y/ (t):| _ e®q, (t) +C (51a,b)

RSLDI(1)®W )

— v o e, (1)+C  (52ab)
0,

BSLI) (51" y = ot 4 ¢, RSLIO) {[(lns)s W} "spie,, (r)} =204 (53ab)

RSLI(I)I:| ( )| RSLD(I)® (t)] |® (t)|+C RSLI(l)I:
®

where C'is the constant and """ is the Kohlrausch-Williams-Watts function [11,15].

The Korcak-scaling-law calculus

Let ®, € R(D,), where w(t)=xt™"
The Korcak-scaling-law derivative of the function @, (¢) is defined:
1+D
KSL 1(1) T dD, (1)
DVD () =—— 22— 54
t a)( ) DK' dt ( )
where x is the normalization constant, D is the scaling exponent, and ¢ is the radius.
The Korcak-scaling-law partical derivatives of the function @, =®  (x,y,z) are
defined:

1+D
KSLaS)q) __f1+D oD, KSL 5D __IHD oo, KSL 5D __f+ oo,

@ Dk ox yoe Dk oy~ e Dx 0z
KSL 69) |:KSL GS)CDC[,] _ KSL aiz)q)w’ KSL 8(1) I:KSL a(l)q) ] KSL 6(2)CD
KSLa(l) [KSLGS)(D J _ KSLa(Zi)C(Dw
KSL 8(1) I:KSL 8(1)d) J KSL 8(2)® KSL 6(1) |:KSL a(l)q) J KSL aiz;q)w
KSL 8(1) [ KSL 6(1)(1) J KSL 8(2)(1)
KSL 6(21) ':KSL 69)CDCJ _ KSL a(zz)(bw, KSL a(zl) I:KSL agcl)q)wJ _ KkSL agfzq)w
and

KSL 8(21) |:KSL 6(;)(1)@} _ KSL 8(y2’2cbw
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The Korcak-scaling-law differential of the function @ ,(¢), denoted by d® , (¢), is given:

d®, (t) = —Dxt PV BLpOg (1) ds (55)
Let ©, € R(®,), where a(t)=xt".
The Korcak-scaling-law integral of the function ® ,(¢) is defined:

t
e, n=-[e, (t)Dxt" P gy (56)

where x is the normalization constant, D is the scaling exponent, and ¢ is the radius.
The indefinite Korcak-scaling-law integral of the function ©,(¢) is defined:

00,0 =-| 0, () Dt P d; (57)

where x is the normalization constant, D is the scaling exponent, and ¢ is the radius.
Let ©, e R(D,) and I, € R(D,).
The properties of the Korcak-scaling-law calculus can be given:
(C1) The sum and difference rules for the Korcak-scaling-law derivative:

e, (£, (0]= "D, )+ DM, 1) (58)
(C2) The constant multiple rule for the Korcak-scaling-law derivative:
#pP[ce,]=C e, 0 (59)

where C is a constant;
(C3) The product rule for the Korcak-scaling-law derivative [15]:

Bpile, - 1,0] =11, DV e, ) +0, “ D" 11, ) (60)

(C4) The quotient rule for the Korcak-scaling-law derivative:

kst | @@ | Ty D1 0,()-0,1) ™ D11, (1) 61)
C Lm0 1, (1) -T1,,(t)
where I1 (1) #0.
(C5) The chain rule for the Korcak-scaling-law derivative:
B {w[e, ] =w"®,) - D e, ) (62)
where w"(©,) = dw(©,)/dO,, exists.
(C6) The first fundamental theorem of the Korcak-scaling-law integral:
0,(0-0,(@=""1"[*'D" e, 0] (63)
(C7) The mean value theorem for the Korcak-scaling-law integral:
Pal"0,(0)=0,(h[e) - aa)] (64)

where a</<t.
(C8) The second fundamental theorem of the Korcak-scaling-law integral:

0,0 =""D"[ *L10, | (65)
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(C9) The net change theorem for the Korcak-scaling-law integral:
0,(b)-0,() =" *'D e, 0] (66)
(C10) The integration by parts for the Korcak-scaling-law integral:
e, 0 1, (0)]=0,0)11,1)-0, (@) 1, @~ 1" 6, D1, (67)

(C11) The Korcak-scaling-law integral for the composite function:

b b
[*D" {wl[o, (]} dt = [w(@®,) - "DV 6, (t)dt (68)

(C12) The second fundamental theorem of the Korcak-scaling-law integral:
0,0 =""D"[ ¥, | (69)
(C13) The net change theorem for the Korcak-scaling-law integral:
SO ED0 O, (0] =0, 1)+ C (70)
(C14) The integration by parts for the Korcak-scaling-law integral:
e, DO, 0)]|=0,0) 1,0 P [0,0 D1, o] a1
(C15) The Korcak-scaling-law integral for the composite function:

[wV®©,) DV e, 0d=we,n]+C (72)

where C is the constant.
The basic formulas for the Korcak-scaling-law calculus can be presented as follows:

KSLDt(l)l — O, KSLDt(l) (Kt*D) — 1’ KSLDt(l) (Kt_D )n — n(Kt_D)n_l (73a,b,C)
KSLDt(l)em’D _ e’(fD, KSLDI(I) ln(K[—D) _ %D , KSLDt(l)SKt_D =(In s)s’“_D (T4a,b,c)
Kt

KSLDt(l) 1Ogs (thD) — 7D1 , KSLDt(l)e®(u (?) — e®(u(t) KSLD;I)G)GJ (t) (75a,b)
kt " Ins
KSL (1) KSL (1)
BLpD e, (r) = M, KSLpM1og, O, (1) = — b 6,0 (76a,b)
0, ‘ (Ins5)®,,(1)
KEpDs® O <[ (Ins)s® @ |- D0, (1), 1= P+C (77a,b)
T (D)
D t
KSLy (0 [n(chf’)"*l] =kt Py +C, KO D0, log,®,()+C (78a,b)
(In5)®, (1)

KSLI,“)(L}m(m—D)w, KSLy _r =log,(kt ")+ C  (79ab)
xt P (Ins) xtP”

KSLII(I) [(lns)s,(fD J _ SKrD +C, KSLIt(]) |:e®w(t) KSLDt(l)®w (t)] — %0 4 o (80a,b)
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KSL (1)
KSL M G)W—(t)mz);”@)w(t) =le,m|+c, *1® _ b 6,0 =In®,()+C (8la,b)
0, ()| 0,1

KSLIt(I)(e;ch )= e,«fD +C, KSLII(I) {[(lns)s%(t)]- KSLDt(l)Gw(t)} — %0 4 ¢ (82a,b)
where C'is the constant and ¢ is the Kohlrausch-Williams-Watts function [11,15].

Applications

In this section, we propose the Fourier-like law for the scaling-law flow in the heat-
transfer process and the Darcy-like law for the scaling-law flow of the fluid in porous medium.
The Fourier-like law for the scaling-law flow

The Fourier-like law for the scaling-law flow in the heat-transfer process can be defined:
q(x,y,z,t) =—a RSLVDT(x,y,z,t)

y7Zst) —ja(/(DyD_l) 6T(.X',y,Z,Z)
Ox oy
where T'(x,y,z,t) is the temperature field in the unit volume at the Cartesian co-ordinates x, y
and z and at the time ¢, g(x, y, z,t) is the vector of the local heat flux density, i, j, and k£ denote
the unit vectors in the Cartesian co-ordinate system, x is the normalization constant, D is the
scaling exponent, ¢ is the material conductivity, and the Richardson-scaling-law gradient in a
Cartesian co-ordinate system is defined:

oT (x,

= —ia(kDx"™) (83)

—kO.’(KDZD_l) aT(xsysZ,t)
Oz

RSy =i(kDx"™! )i + j(kDy"™ )3 +k(xDz"™ )3 (84)
Ox Oy 0z

which is connected with the Laplace-like operator, represented:

oY oY oY
RSLAD _ RSLV% _ RSLVD.RSLVD _ (KD)CDI _j n KDnyl N (KDZDI _] (85)
ox oy 0z
which is connected the Laplace operator [18] when D =1.
In 1-D case, the Fourier-like law for the scaling-law flow in the heat-transfer process reads:

D-1 ) aT(x’ t)
ox

where T'(x,t) is the temperature field, g(x,?) is the local heat flux density and « is the material
conductivity.

When D =1, the Fourier-like law for the scaling-law flow of the heat is the Fourier
law for the flow of the heat [19].

q(x,t)=—a(xDx (86)

The Darcy-like law for the scaling-law flow of the fluid
The Darcy-like law for the scaling-law flow of the fluid in porous medium can be defined:
O(r.,2:0) = ~A "1V (w3, 2.0) = 2Dy 010 EELED
X

7(D+1)) a‘:‘(xéyzz’ t) + kﬂ(Ksz(D+l)) a‘:‘(xn yazat) (87)
y

+jA(kDy
0z
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where O(x, y, z,t) is the specific discharge, E(x, y, z,?) is the hydraulic head, « is the normal-
ization constant, D is the scaling exponent, A is the hydraulic conductivity, the Korcak-
-scaling-law gradient in a Cartesian co-ordinate system is defined:

R R e

which is connected with the Laplace-like operator, given:

KSLA _ KSLVZ _ KSLV 'KSLV
D — D — D D

2 2 2
:[KDx(D”) 2} + KDyf(D”)i +[K‘DZ(D+1) i} (89)
Ox oy Oz

which is connected the Laplace operator [18] when D =-1.
In 1-D case, the Darcy-like law for the scaling-law flow of the fluid in porous medium
can be expressed:

O(x,t) = AxDx~ P B0 (90)
Ox
where Z(x,1) is the hydraulic head, ®(x,?) is the specific discharge, A is the hydraulic conduc-
tivity, x is the normalization constant, and D is the scaling exponent.
When D =1, the Darcy-like law for the scaling-law flow of the fluid is the Darcy law
for the flow of the fluid [20].

Conclusion

In the present work, we proposed the Richardson-scaling-law calculus and Korcak-
scaling-law calculus for the first time. Based on the results for the Richardson-scaling-law
gradient and the Korcak-scaling-law gradient, we considered the Fourier-like law for the scal-
ing-law flow of the heat and the Darcy-like law for describing the scaling-law flow of the fluid,
respectively. The obtained results are as mathematical tools proposed for decriptions of the
fractal scaling-law phenomena in applied sciences.
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Nomenclature

t — time, [s] Greek symbols

X, ¥, 2 — co-ordinates, [m] y _ hvdrauli ductivi 4
. L ydraulic conductivity, [ms™']

q(x,y,z, 1) — local heat flux density, [W] 0(x,1) _ specific discharge, [ms-1]

T(x, y, z, t) — temperature field, [K] 2(x,1) _ hydraulic head, [m]
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