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In this study, we propose the general calculus operators based on the Richardson 
scaling law and Korcak scaling law. The Richardson-scaling-law calculus is con-
sidered to investigate the Fourier-like law for the scaling-law flow of the heat in 
the heat-transfer process. The Korcak-scaling-law calculus is used to model the 
Darcy-like law for describing the scaling-law flow of the fluid in porous medium. 
The formulas are as the special cases of the topology calculus proposed for de-
scriptions of the fractal scaling-law behaviors in nature phenomena. 
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Introduction

The scaling law is a mathematical relationship, which is used to describe the complex 
behaviors in the nature phenomena, for instance, anomalous Hall effect [1], slow earthquakes 
[2], grey matter and white matter of cerebral cortex [3], nano-structured materials [4], turbulent 
shear flows [5], and human behavioral organization [6]. 

Let us recall the scaling laws as follows. The Mandelbrot scaling law, proposed by 
Mandelbrot in 1967, is presented as follows [7]:

	 1( ) Dt tφ κ −= 	 (1)

where (0, )κ ∈ +∞ , (0, )t∈ +∞ , and (0, )D∈ +∞  is the fractal dimension. The Richardson 
scaling law, coined by Richardson in 1926 [8], is given:

	 ( ) Dt tψ κ= 	 (2)

where (0, )κ ∈ +∞ , (0, )t∈ +∞ , and (0, )D∈ +∞  is the scaling exponent. The Korcak scaling 
law, suggested by Korcak in 1938 [9]:

	 ( ) Dt tω κ −= 	 (3)
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where (0, )κ ∈ +∞ , (0, )t∈ +∞ , and (0, )D∈ +∞  is the scaling exponent. The scaling law in life, 
presented by West et al. in 1999 [10], reads:

	 ( ) Dg t tκ= 	 (4)
where (0, )κ ∈ +∞  is the normalization constant, (0, )t∈ +∞ , and ( , )D∈ −∞ +∞  is the scaling 
exponent. In the mathematics, the complex topology can be expressed by the scaling-law func-
tion, e. g.: 

	 ( ) +t t cβϕ κ= 	 (5)
where (0, )κ ∈ +∞  is the normalization constant, ( , )β ∈ −∞ +∞  is the scaling exponent, 

( , )c∈ −∞ +∞  is the constant, and ( , )t∈ −∞ +∞  is the radius. The topology calculus was pro-
posed in [11] based on the Leibniz derivative [12], Stieltjes integral (or Stieltjes-Riemann inte-
gral) [13] and Riemann integral [14] (for more details, see [15]). The topology calculus was 
proposed in [15].

Due to the scaling-law behaviors in the temperature scaling law [16] and in the porous 
media [17], the main targets of the present paper are to propose the general calculus operators 
containing the Richardson scaling law and Korcak scaling law, and to consider the Fourier-like 
law for the scaling-law flow of the heat in the heat-transfer process and Darcy-like law for the 
scaling-law flow of the fluid in porous medium. 

The general calculus operators involving the  
Richardson scaling law and Korcak scaling law 

In this section, we propose the Richardson-scaling-law calculus and the Korcak- 
-scaling-law calculus and discuss their properties based on the topology calculus. 

Let ( )ℵ Φ  be the set of the continuous functions ( )ϕΦ  in the domain A and let ( )ϕℑ  be 
the set of the continuous derivatives of the functions ( )tϕ  in the domain B. 

Let ( ) ( )( ) [ ( )]t t tϕ ϕ ϕΦ = Φ = Φ .
Let us consider the sets of the composite functions, given:

	 { }( ) ( ) : ( ) ( )( ), ( ), ( ), ( )t t tϕ ϕ ϕ ϕ ϕ ϕ ϕℜ Φ = Φ Φ = Φ Φ∈ℵ Φ∈ℑ Φ ∈ℑ 	 (6)

The topology calculus

Let ( )ϕ ϕΦ ∈ℜ Φ , where ( )t t cβϕ κ= + . 
The topology derivative of the function ( )tϕΦ  is defined as [15]:

	
( )

(1)
(1)

d ( )1( )
d

T
t

t
D t

tt c

ϕ
ϕ

βκ

Φ
Φ =

+
	 (7)

where κ  is the normalization constant, β  is the scaling exponent, t is the radius, and c is the 
moving term.

The topology partical derivatives of the function ( , , )x y zω ωΦ = Φ  are defined:

	 (1)
(1)
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( )
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∂Φ
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∂+
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( )
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	 ( ) ( )( ) ( )1 1 2T T T
x x xϕ ϕ∂ ∂ Φ = ∂ Φ , ( ) ( )( ) ( )1 1 2

,
T T T

x y y xϕ ϕ∂ ∂ Φ = ∂ Φ , ( ) ( )( ) ( )1 1 2
,

T T T
x z z xϕ ϕ∂ ∂ Φ = ∂ Φ 	
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	 (1) (1) (2)( )T T T
y y yϕ ϕ∂ ∂ Φ = ∂ Φ ,  (1) (1) (2)

,( )T T T
y x x yϕ ϕ∂ ∂ Φ = ∂ Φ ,  (1) (1) (2)

,( )T T T
y z z yϕ ϕ∂ ∂ Φ = ∂ Φ 	

	 (1) (1) (2)( )T T T
z z zϕ ϕ∂ ∂ Φ = ∂ Φ , (1) (1) (2)

,( )T T T
z x x zϕ ϕ∂ ∂ Φ = ∂ Φ  and (1) (1) (2)

,( )T T T
z y y zϕ ϕ∂ ∂ Φ = ∂ Φ 	

The topology differential of the function ( )tϕΦ , denoted by d ( )tϕΦ , is given:

	 (1) (1)d ( ) ( ) ( )dT
tt t c D t tβ

ϕ ϕκΦ = + Φ 	 (8)

Let ( )ϕ ϕΘ ∈ℜ Θ , where ( )t t cβϕ κ= + . 
The topology integral of the function ( )tϕΘ  is defined [15]:

	 (1) (1)( ) ( )( ) d
t

T
a t

a

I t t t c tβ
ϕ ϕ κΘ = Θ +∫ 	 (9)

where κ  is the normalization constant, β  is the scaling exponent, t is the radius, and c is the 
moving term.

The indefinite topology integral of the function ( )tϕΘ  is defined [15]:

	 (1) (1)( ) ( )( ) dT
tI t t t c tβ

ϕ ϕ κΘ = Θ +∫ 	 (10)

where κ is the normalization constant, β  is the scaling exponent, t is the radius, and c is the 
moving term.

Let ( )ϕ ϕΘ ∈ℜ Φ  and ( )ϕ ϕΠ ∈ℜ Φ . 
The properties of the topology calculus can be given:
(A1) The sum and difference rules for the topology derivative:

	 (1) (1) (1)( ) ( ) ( ) ( )T T T
t t tD t t D t D tϕ ϕ ϕ ϕ Θ ± Π = Θ ± Π  	 (11)

(A2) The constant multiple rule for the topology derivative:

	 (1) (1)( ) ( )T T
t tD C t C D tϕ ϕ Θ = Θ  	 (12)

where C is a constant;
(A3) The product rule for the topology derivative [15]:

	 (1) (1) (1)( ) ( ) ( ) ( ) ( ) ( )T T T
t t tD t t t D t t D tϕ ϕ ϕ ϕ ϕ ϕ Θ ⋅Π = Π Θ +Θ Π  	 (13)

(A4) The quotient rule for the topology derivative [15]:

	
(1) (1)

(1) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

T T
t tT

t
t t D t t D t

D
t t t

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

 Θ Π Θ −Θ Π
= 

Π Π ⋅Π  
	 (14)

where ( ) 0tϕΠ ≠ .
(A5) The chain rule for the topology derivative:

	 { }(1) (1) (1)( ) ( ) ( )T T
t tD w t w D tϕ ϕ ϕ Θ = Θ ⋅ Θ  	 (15)

where (1) ( ) d ( )/dw wϕ ϕ ϕΘ = Θ Θ  exists.
(A6) The first fundamental theorem of the topology integral:

	 (1) (1)( ) ( ) ( )T T
a t tt a I D tϕ ϕ ϕ Θ −Θ = Θ  	 (16)
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(A7) The mean value theorem for the topology integral:

	 [ ](1) ( ) ( ) ( ) ( )T
a tI t l t aϕ ϕ ϕ ϕΘ = Θ − 	 (17)

where a l t< < . 
(A8) The second fundamental theorem of the topology integral:

	 (1) (1)( ) ( )T T
t a tt D I tϕ ϕ Θ = Θ  	 (18)

(A9) The net change theorem for the topology integral:

	 (1) (1)( ) ( ) ( )T T
a t tb a I D tϕ ϕ ϕ Θ −Θ = Θ  	 (19)

(A10) The integration by parts for the topology integral [15]:

	 (1) (1) (1) (1)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T
a t t a t tI t D t t t a a I t D tϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ   Θ Π = Θ ⋅Π −Θ ⋅Π − Θ Π    	(20)

(A11) The topology integral for the composite function: 

	 { }(1) (1) (1)( ) d ( ) ( )d
b b

T T
t t

a a

D w t t w D x tϕ ϕ ϕ Θ = Θ ⋅ Θ ∫ ∫ 	 (21)

(A12) The second fundamental theorem of the topology integral:

	 (1) (1)( ) ( )T T
t tt D I tϕ ϕ Θ = Θ  	 (22)

(A13) The net change theorem for the topology integral:

	 (1) (1) ( ) ( )T T
t tI D t t Cϕ ϕ Θ = Θ +  	 (23)

(A14) The integration by parts for the topology integral [15]:

	 (1) (1) (1) (1)( ) ( ) ( ) ( ) ( ) ( )T T T T
t t t tI t D t t t I t D tϕ ϕ ϕ ϕ ϕ ϕ   Θ Π = Θ ⋅Π − Θ Π    	 (24)

(A15) The topology integral for the composite function: 

	 (1) (1)( ) ( )d ( )T
tw D t t w t Cϕ ϕ ϕ Θ ⋅ Θ = Θ + ∫ 	 (25)

where C is the constant. 

The Richardson-scaling-law calculus

Let ( )ψ ψΦ ∈ℜ Φ , where ( ) Dt tψ κ= . 
The Richardson-scaling-law derivative of the function ( )tψΦ  is defined:

	
1

(1) d ( )
( )

d

D
RSL

t
ttD t

D t
ψ

ψ κ

− Φ
Φ = 	 (26)

where κ  is the normalization constant, D is the scaling exponent, and t is the radius.
The Richardson-scaling-law partical derivatives of the function ( , , )x y zψ ψΦ = Φ  are 

defined:

	
1
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ψ κ

− ∂Φ
∂ Φ =

∂
,   

1
(1)

D
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	 (1) (1) (2)RSL RSL RSL
x x xψ ψ ∂ ∂ Φ = ∂ Φ  ,   (1) (1) (2)

,
RSL RSL RSL

x y y xψ ψ ∂ ∂ Φ = ∂ Φ  	

	 (1) (1) (2)
,

RSL RSL RSL
x z z xψ ψ ∂ ∂ Φ = ∂ Φ  	

	 (1) (1) (2)RSL RSL RSL
y y yψ ψ ∂ ∂ Φ = ∂ Φ  ,   (1) (1) (2)

,
RSL RSL RSL

y x x yψ ψ ∂ ∂ Φ = ∂ Φ  	

	 (1) (1) (2)
,

RSL RSL RSL
y z z yψ ψ ∂ ∂ Φ = ∂ Φ  	

	 (1) (1) (2)RSL RSL RSL
z z zψ ψ ∂ ∂ Φ = ∂ Φ  ,   (1) (1) (2)

,
RSL RSL RSL

z x x zψ ψ ∂ ∂ Φ = ∂ Φ  	

and

	 (1) (1) (2)
,

RSL RSL RSL
z y y zψ ψ ∂ ∂ Φ = ∂ Φ  	

The Richardson-scaling-law differential of the function ( )tψΦ , denoted by d ( )tψΦ , is 
given:

	 1 (1)d ( ) ( )dD RSL
tt D t D t tψ ψκ −Φ = Φ 	 (27)

Let ( )ψ ψΘ ∈ℜ Θ , where ( ) Dt tψ κ= . 
The Richardson-scaling-law integral of the function ( )tψΘ  is defined:

	 (1) 1( ) ( ) d
t

RSL D
a t

a

I t t D t tψ ψ κ −Θ = Θ∫ 	 (28)

where κ  is the normalization constant, D is the scaling exponent, and t is the radius.
The indefinite Richardson-scaling-law integral of the function ( )tϕΘ  is defined:

	 (1) 1( ) ( ) dRSL D
tI t t D t tψ ψ κ −Θ = Θ∫ 	 (29)

where κ  is the normalization constant, D is the scaling exponent, and t is the radius.
Let ( )ψ ψΘ ∈ℜ Φ  and ( )ψ ψΠ ∈ℜ Φ . 
The properties of the Richardson-scaling-law calculus can be given:
(B1) The sum and difference rules for the Richardson-scaling-law derivative:

	 (1) (1) (1)( ) ( ) ( ) ( )RSL RSL RSL
t t tD t t D t D tψ ψ ψ ψ Θ ± Π = Θ ± Π  	 (30)

(B2) The constant multiple rule for the Richardson-scaling-law derivative:

	 (1) (1)( ) ( )RSL RSL
t tD C t C D tψ ψ Θ = Θ  	 (31)

where C is a constant;
(B3) The product rule for the Richardson-scaling-law derivative [15]:

	 (1) (1) (1)( ) ( ) ( ) ( ) ( ) ( )RSL RSL RSL
t t tD t t t D t t D tψ ψ ψ ψ ψ ψ Θ ⋅Π = Π Θ +Θ Π  	 (32)

(B4) The quotient rule for the Richardson-scaling-law derivative:

	
(1) (1)

(1) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

RSL RSL
t tRSL

t
t t D t t D t

D
t t t

ψ ψ ψ ψ ψ

ψ ψ ψ

 Θ Π Θ −Θ Π
= 

Π Π ⋅Π  
	 (14)

where ( ) 0tψΠ ≠ .
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(B5) The chain rule for the Richardson-scaling-law derivative:

	 { }(1) (1) (1)( ) ( ) ( )RSL RSL
t tD w t w D tψ ψ ψ Θ = Θ ⋅ Θ  	 (33)

where (1) ( ) d ( ) /dw wψ ψ ψΘ = Θ Θ  exists.
(B6) The first fundamental theorem of the Richardson-scaling-law integral:

	 (1) (1)( ) ( ) ( )RSL RSL
a t tt a I D tψ ψ ψ Θ −Θ = Θ  	 (34)

(B7) The mean value theorem for the Richardson-scaling-law integral:

	 [ ](1) ( ) ( ) ( ) ( )RSL
a tI t l t aψ ψ ψ ψΘ = Θ − 	 (35)

where a l t< < . 
(B8) The second fundamental theorem of the Richardson-scaling-law integral:

	 (1) (1)( ) ( )RSL RSL
t a tt D I tψ ψ Θ = Θ  	 (36)

(B9) The net change theorem for the Richardson-scaling-law integral:

	 (1) (1)( ) ( ) ( )RSL RSL
a t tb a I D tψ ψ ψ Θ −Θ = Θ  	 (37)

(B10) The integration by parts for the Richardson-scaling-law integral:

 (1) (1) (1) (1)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )RSL RSL RSL RSL
a t t a t tI t D t t t a a I t D tψ ψ ψ ψ ψ ψ ψ ψ   Θ Π =Θ ⋅Π −Θ ⋅Π − Θ Π    	 (38)

(B11) The Richardson-scaling-law integral for the composite function: 

	 { }(1) (1) (1)( ) d ( ) ( )d
b b

RSL RSL
t t

a a

D w t t w D t tψ ψ ψ Θ = Θ ⋅ Θ ∫ ∫ 	 (39)

(B12) The second fundamental theorem of the Richardson-scaling-law integral:

	 (1) (1)( ) ( )RSL RSL
t tt D I tψ ψ Θ = Θ  	 (40)

(B13) The net change theorem for the Richardson-scaling-law integral:

	 (1) (1) ( ) ( )RSL RSL
t tI D t t Cψ ψ Θ = Θ +  	 (41)

(B14) The integration by parts for the Richardson-scaling-law integral:

	 (1) (1) (1) (1)( ) ( ) = ( ) ( ) ( ) ( )RSL RSL RSL RSL
t t t tI t D t t t I t D tψ ψ ψ ψ ψ ψ   Θ Π Θ ⋅Π − Θ Π    	 (42)

(B15) The Richardson-scaling-law integral for the composite function:

	 (1) (1)( ) ( )d ( )RSL
tw D t t w t Cψ ψ ψ Θ ⋅ Θ = Θ + ∫ 	 (43)

where C is the constant. 
The basic formulas for the Richardson-scaling-law calculus can be given:

	 (1)1 0RSL
tD = ,   (1) ( ) 1RSL D

tD tκ = ,   (1) 1( ) ( )RSL D n D n
tD t n tκ κ −= 	 (44a,b,c)

	 (1)e e
D DRSL t t

tD κ κ= ,   (1) 1ln( )RSL D
t DD t

t
κ

κ
= ,   (1) (ln )

D DRSL t t
tD s s sκ κ= 	 (45a,b,c)
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	 (1) 1log ( )
ln

RSL D
t s DD t

t s
κ

κ
= ,   ( ) ( )(1) (1)e e ( )t tRSL RSL

t tD D tψ ψ
ψ

Θ Θ= Θ 	 (46a,b)

	
( )

(1)
(1) ( )

ln ( )
RSL

tRSL
t

D t
D t

t
ψ

ψ
ψ

Θ
Θ =

Θ
,   

(1)
(1) ( )

log ( )
(ln ) ( )

RSL
tRSL

t s
D t

D t
s t

ψ
ψ

ψ

Θ
Θ =

Θ
	 (47a,b)

	 ( ) ( )(1) (1)(ln ) ( )t tRSL RSL
t tD s s s D tψ ψ

ψ
Θ Θ = ⋅ Θ  ,   (1)1 +RSL D

tI t Cκ= 	 (48a,b)

	 (1) 1( ) [ ]RSL D n D n
tI n t t Cκ κ−  = +  ,   

(1)
(1) ( )

log ( )
(ln ) ( )

T
tRSL

t s
D t

I t C
s t

ψ
ψ

ψ

 Θ
= Θ + 

Θ  
	 (49a,b)

	 (1) 1 ln( )RSL D
t DI t C

t
κ

κ
  = + 
 

,   (1) 1 1 log ( )
(ln )

RSL D
t sDI t C

s t
κ

κ
 

⋅ = + 
 

	 (50a,b)

	 (1) (ln )
D DRSL t t

tI s s s Cκ κ  = +  
,   ( ) ( )(1) (1)e ( )t tRSL RSL

t tI D t e Cψ ψ
ψ

Θ Θ Θ = +  	 (51a,b)

     (1) (1)( )
( ) ( )

( )
RSL RSL

t t
t

I D t t C
t

ψ
ψ ψ

ψ

 Θ
 Θ = Θ +
Θ  

,  
(1)

(1) ( )
ln ( )

( )

RSL
tRSL

t
D t

I t C
t
ψ

ψ
ψ

 Θ
= Θ + 

Θ  
	 (52a,b)

	 (1) (e )
D DRSL t t

tI e Cκ κ= + ,   { }( ) ( )(1) (1)(ln ) ( )t tRSL RSL
t tI s s D t s Cψ ψ

ψ
Θ Θ  ⋅ Θ = +  	 (53a,b)

where C is the constant and e
Dtκ  is the Kohlrausch-Williams-Watts function [11,15].

The Korcak-scaling-law calculus

Let ( )ω ωΦ ∈ℜ Φ , where ( ) Dt tω κ −= . 
The Korcak-scaling-law derivative of the function ( )tωΦ  is defined:

	
1

(1) d ( )( )
d

D
KSL

t
ttD t

D t
ω

ω κ

+ Φ
Φ = − 	 (54)

where κ  is the normalization constant, D is the scaling exponent, and t is the radius.
The Korcak-scaling-law partical derivatives of the function ( , , )x y zω ωΦ = Φ  are 

defined:

	
1

(1)
D

KSL
x

t
D x

ω
ω κ

+ ∂Φ
∂ Φ = −

∂
,   

1
(1)

D
KSL

y
t
D y

ω
ω κ

+ ∂Φ
∂ Φ = −

∂
,   

1
(1)

D
KSL

z
t
D z

ω
ω κ

+ ∂Φ
∂ Φ = −

∂
	

	 (1) (1) (2)KSL KSL KSL
x x xω ω ∂ ∂ Φ = ∂ Φ  ,   (1) (1) (2)

,
KSL KSL KSL

x y y xω ω ∂ ∂ Φ = ∂ Φ  	

	 (1) (1) (2)
,

KSL KSL KSL
x z z xω ω ∂ ∂ Φ = ∂ Φ  	

	 (1) (1) (2)KSL KSL KSL
y y yω ω ∂ ∂ Φ = ∂ Φ  ,   (1) (1) (2)

,
KSL KSL KSL

y x x yω ω ∂ ∂ Φ = ∂ Φ  	

	 (1) (1) (2)
,

KSL KSL KSL
y z z yω ω ∂ ∂ Φ = ∂ Φ  	

	 (1) (1) (2)KSL KSL KSL
z z zω ω ∂ ∂ Φ = ∂ Φ  ,   (1) (1) (2)

,
KSL KSL KSL

z x x zω ω ∂ ∂ Φ = ∂ Φ  	

and 

	 (1) (1) (2)
,

KSL KSL KSL
z y y zω ω ∂ ∂ Φ = ∂ Φ  	
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The Korcak-scaling-law differential of the function ( )tωΦ , denoted by d ( )tωΦ , is given:

	 ( )1 (1)d ( ) ( )dD KSL
tt D t D t tω ωκ − +Φ = − Φ 	 (55)

Let ( )ω ωΘ ∈ℜ Θ , where ( ) Dt tω κ −= . 
The Korcak-scaling-law integral of the function ( )tωΘ  is defined:

	 ( )1(1) ( ) ( ) d
t

DKSL
a t

a

I t t D t tω ω κ − +Θ = − Θ∫ 	 (56)

where κ  is the normalization constant, D  is the scaling exponent, and t is the radius.
The indefinite Korcak-scaling-law integral of the function ( )tϕΘ  is defined:

	 ( )1(1) ( ) ( ) dDKSL
tI t t D t tω ω κ − +Θ = − Θ∫ 	 (57)

where κ  is the normalization constant, D is the scaling exponent, and t is the radius.
Let ( )ω ωΘ ∈ℜ Φ  and ( )ω ωΠ ∈ℜ Φ . 
The properties of the Korcak-scaling-law calculus can be given:
(C1) The sum and difference rules for the Korcak-scaling-law derivative: 

	 [ ](1) (1) (1)( ) ( ) ( ) ( )KSL KSL KSL
t t tD t t D t D tω ω ω ωΘ ±Π = Θ ± Π 	 (58)

(C2) The constant multiple rule for the Korcak-scaling-law derivative:

	 [ ](1) (1)( ) ( )KSL KSL
t tD C t C D tω ωΘ = Θ 	 (59)

where C is a constant;
(C3) The product rule for the Korcak-scaling-law derivative [15]:

	 [ ](1) (1) (1)( ) ( ) ( ) ( ) ( ) ( )KSL KSL KSL
t t tD t t t D t t D tω ω ω ω ω ωΘ ⋅Π = Π Θ +Θ Π 	 (60)

(C4) The quotient rule for the Korcak-scaling-law derivative: 

	
(1) (1)

(1) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

KSL KSL
KSL t t

t
t t D t t D tD
t t t

ω ω ω ω ω

ω ω ω

 Θ Π Θ −Θ Π
= Π Π ⋅Π 

	 (61)

where ( ) 0tωΠ ≠ .
(C5) The chain rule for the Korcak-scaling-law derivative:

	 [ ]{ }(1) (1) (1)( ) ( ) ( )KSL KSL
t tD w t w D tω ω ωΘ = Θ ⋅ Θ 	 (62)

where (1) ( ) d ( ) /dw wω ω ωΘ = Θ Θ  exists.
(C6) The first fundamental theorem of the Korcak-scaling-law integral:

	 (1) (1)( ) ( ) ( )KSL KSL
a t tt a I D tω ω ω Θ −Θ = Θ  	 (63)

(C7) The mean value theorem for the Korcak-scaling-law integral:

	 [ ](1) ( ) ( ) ( ) ( )KSL
a tI t l t aω ω ω ωΘ = Θ − 	 (64)

where a l t< < . 
(C8) The second fundamental theorem of the Korcak-scaling-law integral:

	 (1) (1)( ) ( )KSL KSL
t a tt D I tω ω Θ = Θ  	 (65)
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(C9) The net change theorem for the Korcak-scaling-law integral:

	 (1) (1)( ) ( ) ( )KSL KSL
a t tb a I D tω ω ω Θ −Θ = Θ  	 (66)

(C10) The integration by parts for the Korcak-scaling-law integral:

 (1) (1) (1) (1)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )KSL KSL KSL KSL
a t t a t tI t D t t t a a I t D tω ω ω ω ω ω ω ω   Θ Π =Θ ⋅Π −Θ ⋅Π − Θ Π    	(67)

(C11) The Korcak-scaling-law integral for the composite function:

	 [ ]{ }(1) (1) (1)( ) d ( ) ( )d
b b

KSL KSL
t t

a a

D w t t w D t tω ω ωΘ = Θ ⋅ Θ∫ ∫ 	 (68)

(C12) The second fundamental theorem of the Korcak-scaling-law integral:

	 (1) (1)( ) ( )KSL KSL
t tt D I tω ω Θ = Θ  	 (69)

(C13) The net change theorem for the Korcak-scaling-law integral:

	 (1) (1) ( ) ( )KSL KSL
t tI D t t Cω ω Θ = Θ +  	 (70)

(C14) The integration by parts for the Korcak-scaling-law integral:

	 (1) (1) (1) (1)( ) ( ) ( ) ( ) ( ) ( )KSL KSL KSL KSL
t t t tI t D t t t I t D tω ω ω ω ω ω   Θ Π = Θ ⋅Π − Θ Π    	 (71)

(C15) The Korcak-scaling-law integral for the composite function:

	 [ ](1) (1)( ) ( )d ( )KSL
tw D t t w t Cω ω ωΘ ⋅ Θ = Θ +∫ 	 (72)

where C is the constant.
The basic formulas for the Korcak-scaling-law calculus can be presented as follows:

	 (1)1 0KSL
tD = ,   (1) ( ) 1KSL D

tD tκ − = ,   (1) 1( ) ( )KSL D n D n
tD t n tκ κ− − −= 	 (73a,b,c) 

	 (1)e e
D DKSL t t

tD κ κ− −
= ,   (1) 1ln( )KSL D

t DD t
t

κ
κ

−
−= ,   (1) (ln )

D DKSL t t
tD s s sκ κ− −

= 	 (74a,b,c)

	 (1) 1log ( )
ln

KSL D
t s DD t

t s
κ

κ
−

−= ,   ( ) ( )(1) (1)e e ( )t tKSL KSL
t tD D tω ω

ω
Θ Θ= Θ 	 (75a,b)

	
(1)

(1) ( )ln ( )
( )

KSL
KSL t

t
D tD t

t
ω

ω
ω

Θ
Θ =

Θ
,   

(1)
(1) ( )log ( )

(ln ) ( )

KSL
KSL t

t s
D tD t
s t

ω
ω

ω

Θ
Θ =

Θ
	 (76a,b)

	 ( ) ( )(1) (1)(ln ) ( )t tKSL KSL
t tD s s s D tω ω

ω
Θ Θ = ⋅ Θ  ,   (1)1 +KSL D

tI t Cκ −= 	 (77a,b)

	 (1) 1( ) ( )KSL D n D n
tI n t t Cκ κ− − −  = +  ,   

(1)
(1) ( ) log ( )

(ln ) ( )

T
KSL t

t s
D tI t C

s t
ω

ω
ω

 Θ
= Θ + Θ 

	 (78a,b)

	 (1) 1 ln( )KSL D
t DI t C

t
κ

κ
−

−
  = + 
 

,   (1) 1 1 log ( )
(ln )

KSL D
t sDI t C

s t
κ

κ
−

−

 
⋅ = + 

 
	 (79a,b)

	 (1) (ln )
D DKSL t t

tI s s s Cκ κ− −  = +  
,   ( ) ( )(1) (1)e ( ) et tKSL KSL

t tI D t Cω ω
ω

Θ Θ Θ = +  	 (80a,b)
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    (1) (1)( ) ( ) ( )
( )

KSL KSL
t t

tI D t t C
t

ω
ω ω

ω

 Θ
Θ = Θ + 

Θ  
,   

(1)
(1) ( ) ln ( )

( )

KSL
KSL t

t
D tI t C

t
ω

ω
ω

 Θ
= Θ + Θ 

	(81a,b)

	 (1) (e ) e
D DKSL t t

tI Cκ κ− −
= + ,   { }( ) ( )(1) (1)(ln ) ( )t tKSL KSL

t tI s s D t s Cω ω
ω

Θ Θ  ⋅ Θ = +  	 (82a,b)

where C is the constant and 
/

e
Dtκ  is the Kohlrausch-Williams-Watts function [11, 15].

Applications 

In this section, we propose the Fourier-like law for the scaling-law flow in the heat-
transfer process and the Darcy-like law for the scaling-law flow of the fluid in porous medium.

The Fourier-like law for the scaling-law flow 

The Fourier-like law for the scaling-law flow in the heat-transfer process can be defined:

	 1 1 1

( , , , ) ( , , , )
( , , , ) ( , , , ) ( , , , )( ) ( ) ( )

RSL
D

D D D

x y z t T x y z t
T x y z t T x y z t T x y z ti Dx j Dy k Dz

x y z

α

α κ α κ α κ− − −

= − ∇
∂ ∂ ∂

= − − −
∂ ∂ ∂

q

	 (83)

where ( , , , )T x y z t  is the temperature field in the unit volume at the Cartesian co-ordinates ,x y  
and z and at the time t, ( , , , )x y z tq  is the vector of the local heat flux density, i , j, and k  denote 
the unit vectors in the Cartesian co-ordinate system, κ  is the normalization constant, D  is the 
scaling exponent, α  is the material conductivity, and the Richardson-scaling-law gradient in a 
Cartesian co-ordinate system is defined:

	 1 1 1( ) ( ) ( )RSL D D D
D i Dx j Dy k Dz

x y z
κ κ κ− − −∂ ∂ ∂

∇ = + +
∂ ∂ ∂

	 (84)

which is connected with the Laplace-like operator, represented:

	
22 2

2 1 1 1RSL RSL RSL RSL D D D
D D D D Dx Dy Dz

x y z
κ κ κ− − − ∂ ∂ ∂   ∆ = ∇ = ∇ ∇ = + +    ∂ ∂ ∂    

 	 (85)

which is connected the Laplace operator [18] when 1D = .
In 1-D case, the Fourier-like law for the scaling-law flow in the heat-transfer process reads:

	 1 ( , )( , ) ( )D T x tq x t Dx
x

α κ − ∂
= −

∂
	 (86)

where ( , )T x t  is the temperature field, ( , )q x t  is the local heat flux density and α  is the material 
conductivity.

When 1D = , the Fourier-like law for the scaling-law flow of the heat is the Fourier 
law for the flow of the heat [19]. 

The Darcy-like law for the scaling-law flow of the fluid

The Darcy-like law for the scaling-law flow of the fluid in porous medium can be defined:

	

( 1)

( 1) ( 1)

( , , , )( , , , ) ( , , , ) ( )

( , , , ) ( , , , )( ) ( )

KSL D
D

D D

x y z tx y z t x y z t i Dx
x

x y z t x y z tj Dy k Dz
y z

λ λ κ

λ κ λ κ

− +

− + − +

∂Ξ
= − ∇ Ξ =

∂
∂Ξ ∂Ξ

+ +
∂ ∂

Θ

	 (87)
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where ( , , , )x y z tΘ  is the specific discharge, ( , , , )x y z tΞ  is the hydraulic head, κ  is the normal-
ization constant, D  is the scaling exponent, λ is the hydraulic conductivity, the Korcak- 
-scaling-law gradient in a Cartesian co-ordinate system is defined:

	 ( 1) ( 1) ( 1)KSL D D D
D i Dx j Dy k Dz

x y z
κ κ κ− + − + − +∂ ∂ ∂     ∇ = − + − + −     ∂ ∂ ∂

	 (88)

which is connected with the Laplace-like operator, given:

	

2

22 2
( 1) ( 1) ( 1)

KSL KSL KSL KSL
D D D D

D D DDx Dy Dz
x y z

κ κ κ− + − + − +

∆ = ∇ = ∇ ∇

 ∂ ∂ ∂   = + +    ∂ ∂ ∂    



	 (89)

which is connected the Laplace operator [18] when 1D = − . 
In 1-D case, the Darcy-like law for the scaling-law flow of the fluid in porous medium 

can be expressed:

	 ( 1) ( , )( , ) D x tx t Dx
x

λκ − + ∂Ξ
Θ =

∂
	 (90)

where ( , )x tΞ  is the hydraulic head, ( , )x tΘ  is the specific discharge, λ  is the hydraulic conduc-
tivity, κ  is the normalization constant, and D is the scaling exponent. 

When 1D = , the Darcy-like law for the scaling-law flow of the fluid is the Darcy law 
for the flow of the fluid [20]. 

Conclusion

In the present work, we proposed the Richardson-scaling-law calculus and Korcak-
scaling-law calculus for the first time. Based on the results for the Richardson-scaling-law 
gradient and the Korcak-scaling-law gradient, we considered the Fourier-like law for the scal-
ing-law flow of the heat and the Darcy-like law for describing the scaling-law flow of the fluid, 
respectively. The obtained results are as mathematical tools proposed for decriptions of the 
fractal scaling-law phenomena in applied sciences. 
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Nomenclature
t	 –	 time, [s]
x, y, z	 –	 co-ordinates, [m]
q(x, y, z, t)	 –	 local heat flux density, [W]
T(x, y, z, t)	 –	 temperature field, [K]

Greek symbols

λ	 –	 hydraulic conductivity, [ms–1]
Θ(x,t)	 –	 specific discharge, [ms–1]
Ξ(x,t)	 –	 hydraulic head, [m]

References
[1]	 Nagaosa, N., et al., Anomalous Hall Effect, Reviews of Modern Physics, 82 (2010), 2, Article ID 1539
[2]	 Ide, S., et al., A Scaling Law for Slow Earthquakes, Nature, 447 (2007), 7140, pp.76-79
[3]	 Zhang, K., et al., A Universal Scaling Law between Gray Matter and White Matter of Cerebral Cortex, 

Proceedings of the National Academy of Sciences, 97 (2000), 10, pp. 5621-5626
[4]	 Wang, J., et al., A Scaling Law for Properties of Nano-structured Materials, Proceedings of the Royal 

Society A, 462 (2006), 2069, pp.1355-1363



Yang, X.-J.: New Insight into the Fourier-Like and Darcy-Like Models in Porous Medium 
3858	 THERMAL SCIENCE: Year 2020, Vol. 24, No. 6A, pp. 3847-3858

[5]	 Barenblatt, G. I., et al., Scaling Laws for Fully Developed Turbulent Shear Flows. Part 2. Processing of 
Experimental Data, Journal of Fluid Mechanics, 248 (1993), 1, pp. 521-529

[6]	 Nakamura, T., et al.,Universal Scaling Law in Human Behavioral Organization, Physical Review Letters, 
99 (2007), 13, Article ID 138103

[7]	 Mandelbrot, B., How Long is the Coast of Britain? Statistical Self-similarity and Fractional Dimension, 
Science, 156 (1967), 3775, pp. 636-638

[8]	 Richardson, L., F., Atmospheric Diffusion Shown on a Distance-Neighbour Graph, Proceedings of the 
Royal Society A, 110 (1926), 756, pp. 709-737

[9]	 Korcak, J., Geopolitické základy Československa. Jeho kmenové oblasti (The Geopolitic Foundations of 
Czechoslovakia. Its Tribal Areas), Prague, Orbis, 1938

[10]	 West, G. B., et al., The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms, 
Science, 284 (1999), 5420, pp. 1677-1679

[11]	 Yang, X. J., New Non-Cconventional Methods for Quantitative Concepts of Anomalous Rheology, Ther-
mal Science, 23 (2019), 6B, pp. 4117-4127

[12]	 Leibniz, G. W. Memoir Using the Chain Rule, 1676
[13]	 Stieltjes, T. J. Recherches Sur les Fractions Continues, Comptes Rendus de l’Académie des Sciences Se-

ries I -Mathematics, 118 (1894), 1894, pp. 1401-1403
[14]	 Riemann, B., Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Dieterich, 

Gottingen, 1867
[15]	 Yang, X. J., Theory and Applications of Special Functions for Scientists and Engineers, Springer Nature, 

New York, USA, 2021
[16]	 Albash, T., et al., Temperature Scaling Law for Quantum Annealing Optimizers, Physical Review Letters, 

119 (2017), 11, Article ID 110502
[17]	 Grunau, D. W., et al., Domain Growth, Wetting, and Scaling in Porous Media, Physical Review Letters, 

71 (1993), 25, Article ID 4198
[18]	 Laplace, P. S. (1782). Théorie des Attractions des Sphéroïdes et de la Figure des Planètes. Mémoires de 

l’Académie Royale des Sciences, 1782, pp. 113-196
[19]	 Fourier, J. B. J., Théorie Analytique de la Chaleur, Didot, Paris, 1822
[20]	 Darcy, H. P. G., Les Fontaines publiques de la ville de Dijon, Dalmont, Paris, 1856

Paper submitted: May 12, 2019
Paper revised: January 12, 2020 
Paper accepted: January 25, 2020

© 2020 Society of Thermal Engineers of Serbia
Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia.

This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions


