THERMAL SCIENCE
International Scientific Journal
A NEW INSIGHT INTO VECTOR CALCULUS WITH RESPECT TO MONOTONE FUNCTIONS FOR THE COMPLEX FLUID-FLOWS
ABSTRACT
In the paper, the Navier-Stokes-type equations of the complex fluid-flows, the equations of the complex turbulent flows, and Euler-type equations of the complex fluid-flows based on the theory of the new vector calculus with respect to monotone functions are investigated for the first time.
KEYWORDS
PAPER SUBMITTED: 2020-06-01
PAPER REVISED: 2020-07-20
PAPER ACCEPTED: 2020-07-29
PUBLISHED ONLINE: 2020-11-27
THERMAL SCIENCE YEAR
2020, VOLUME
24, ISSUE
Issue 6, PAGES [3835 - 3845]
- Newton, I., Methodus Fluxionum et Serierum Infinitarum, London, UK, 1671
- Newton, I., Philosophiae Naturalis Principia Mathematica, London, UK, 1687
- Leibniz, G. W., Nova Methodus pro Maximis et Minimis, Itemque Tangentibus, quae nec fractas nec Irrationals Quantitates Moratur, et Singulare pro illi Calculi Genus, Acta Eruditorum, 1684, pp. 467-473
- Leibniz, G. W., De geometria recondita et analysi indivisibilium atque infinitorum, Acta Eruditorum, 1686, pp. 292-300
- Leibniz, G. W. Memoir Using the Chain Rule, 1676
- Child, J. M., The Early Mathematical Manuscripts of Leibniz, Open Court, Chicago, Ill., USA, 1920
- Bos, H. J. M., Differentials, Higher-order Differentials and the Derivative in the Leibnizian Calculus, Archive for History of Exact Sciences, 14 (1974), 1, pp. 1-90
- Stieltjes, T. J. Recherches Sur les Fractions Continues, Comptes Rendus de l'Académie des Sciences Series I -Mathematics, 118 (1894), 1894, pp. 1401-1403
- Riemann, B., Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Dieterich, Gottingen, Germany, 1867
- Lebesgue, H., Intégrale, Longueur, Aire, Annali di Matematica Pura ed Applicata, 7 (1902), 1, pp. 231-359
- Stoll, M., Introduction to Real Analysis, Addison-Wesley, Longman, Boston, Mass., USA, 2001
- Ter Horst, H. J. On Stieltjes Integration in Euclidean Space, Journal of Mathematical Analysis and Applications, 114 (1986), 1, pp. 57-74
- Carter, M., Van Brunt, B., The Lebesgue-Stieltjes Integral: a Practical Introduction, Springer, New York, USA, 2000
- Yang, X. J., The Vector Calculus with Respect to Monotone Functions Applied to Heat Conduction Problems, Thermal Science, 24 (2020), 6B, pp. 3949-3959
- Yang, X.-J., Theory and Applications of Special Functions for Scientists and Engineers, Springer Nature, New York, USA, 2021
- Yang, X.-J., et al. General Fractional Derivatives with Applications in Viscoelasticity, Academic Press, New York, USA, 2020
- Yang, X. J. (2019). New Non-Cconventional Methods for Quantitative Concepts of Anomalous Rheology, Thermal Science, 23 (2019), 6B, pp. 4117-4127
- Widder, D. V., Advanced Calculus, Prentice-Hall, New York, USA, 1947
- Gauss C. F., Theoria Attractionis Corporum Sphaeroidicorum Ellipticorum Homogeneorum Methodo Novo Tractata, Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores, 2 (1813), pp. 2-5
- Ostrogradsky, M. V., Note sur la théorie de la chaleur, Mémoires présentés à l'Académie impériale des Sciences de St. Petersbourg, 6 (1831), 1, pp. 123-138 (Presented in 1828)
- Stokes, G. G., A Smith's prize paper, Cambridge University, Calendar, Cambridge, UK, 1854
- Green, G., An Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism, Notingham, UK, 1828
- Stokes, G. G., On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids, Transactions of the Cambridge Philosophical Society, 8 (1845), 2, pp. 287-305
- Stokes, G. G., On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Transactions of the Cambridge Philosophical Society, 9 (1851), 2, pp. 8-106
- Reynolds, O., The Sub-Mechanics of the Universe, Cambridge University Press, Cambridge, UK, 1903
- Euler, L., Principes Généraux du Mouvement des Fluides, Mémoires de l'académie des sciences de Berlin, 11 (1757), 1757, pp. 274-315
- Cauchy, A. L., Recherches sur l'équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques, Bulletin de la Socié té philomathique de Paris, 1823, pp. 9-13
- Navier, C. L., Mémoire sur les lois du mouvement des fluides, Mémoires de l'Académie Royale des Sciences de l'Institut de France, 6 (1822), 1822, pp. 375-394
- Frisch, U., Turbulence, Cambridge University Press, New York, USA, 1995