THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

A NEW INSIGHT INTO VECTOR CALCULUS WITH RESPECT TO MONOTONE FUNCTIONS FOR THE COMPLEX FLUID-FLOWS

ABSTRACT
In the paper, the Navier-Stokes-type equations of the complex fluid-flows, the equations of the complex turbulent flows, and Euler-type equations of the complex fluid-flows based on the theory of the new vector calculus with respect to monotone functions are investigated for the first time.
KEYWORDS
PAPER SUBMITTED: 2020-06-01
PAPER REVISED: 2020-07-20
PAPER ACCEPTED: 2020-07-29
PUBLISHED ONLINE: 2020-11-27
DOI REFERENCE: https://doi.org/10.2298/TSCI2006835Y
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2020, VOLUME 24, ISSUE Issue 6, PAGES [3835 - 3845]
REFERENCES
  1. Newton, I., Methodus Fluxionum et Serierum Infinitarum, London, UK, 1671
  2. Newton, I., Philosophiae Naturalis Principia Mathematica, London, UK, 1687
  3. Leibniz, G. W., Nova Methodus pro Maximis et Minimis, Itemque Tangentibus, quae nec fractas nec Irrationals Quantitates Moratur, et Singulare pro illi Calculi Genus, Acta Eruditorum, 1684, pp. 467-473
  4. Leibniz, G. W., De geometria recondita et analysi indivisibilium atque infinitorum, Acta Eruditorum, 1686, pp. 292-300
  5. Leibniz, G. W. Memoir Using the Chain Rule, 1676
  6. Child, J. M., The Early Mathematical Manuscripts of Leibniz, Open Court, Chicago, Ill., USA, 1920
  7. Bos, H. J. M., Differentials, Higher-order Differentials and the Derivative in the Leibnizian Calculus, Archive for History of Exact Sciences, 14 (1974), 1, pp. 1-90
  8. Stieltjes, T. J. Recherches Sur les Fractions Continues, Comptes Rendus de l'Académie des Sciences Series I -Mathematics, 118 (1894), 1894, pp. 1401-1403
  9. Riemann, B., Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Dieterich, Gottingen, Germany, 1867
  10. Lebesgue, H., Intégrale, Longueur, Aire, Annali di Matematica Pura ed Applicata, 7 (1902), 1, pp. 231-359
  11. Stoll, M., Introduction to Real Analysis, Addison-Wesley, Longman, Boston, Mass., USA, 2001
  12. Ter Horst, H. J. On Stieltjes Integration in Euclidean Space, Journal of Mathematical Analysis and Applications, 114 (1986), 1, pp. 57-74
  13. Carter, M., Van Brunt, B., The Lebesgue-Stieltjes Integral: a Practical Introduction, Springer, New York, USA, 2000
  14. Yang, X. J., The Vector Calculus with Respect to Monotone Functions Applied to Heat Conduction Problems, Thermal Science, 24 (2020), 6B, pp. 3949-3959
  15. Yang, X.-J., Theory and Applications of Special Functions for Scientists and Engineers, Springer Nature, New York, USA, 2021
  16. Yang, X.-J., et al. General Fractional Derivatives with Applications in Viscoelasticity, Academic Press, New York, USA, 2020
  17. Yang, X. J. (2019). New Non-Cconventional Methods for Quantitative Concepts of Anomalous Rheology, Thermal Science, 23 (2019), 6B, pp. 4117-4127
  18. Widder, D. V., Advanced Calculus, Prentice-Hall, New York, USA, 1947
  19. Gauss C. F., Theoria Attractionis Corporum Sphaeroidicorum Ellipticorum Homogeneorum Methodo Novo Tractata, Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores, 2 (1813), pp. 2-5
  20. Ostrogradsky, M. V., Note sur la théorie de la chaleur, Mémoires présentés à l'Académie impériale des Sciences de St. Petersbourg, 6 (1831), 1, pp. 123-138 (Presented in 1828)
  21. Stokes, G. G., A Smith's prize paper, Cambridge University, Calendar, Cambridge, UK, 1854
  22. Green, G., An Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism, Notingham, UK, 1828
  23. Stokes, G. G., On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids, Transactions of the Cambridge Philosophical Society, 8 (1845), 2, pp. 287-305
  24. Stokes, G. G., On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Transactions of the Cambridge Philosophical Society, 9 (1851), 2, pp. 8-106
  25. Reynolds, O., The Sub-Mechanics of the Universe, Cambridge University Press, Cambridge, UK, 1903
  26. Euler, L., Principes Généraux du Mouvement des Fluides, Mémoires de l'académie des sciences de Berlin, 11 (1757), 1757, pp. 274-315
  27. Cauchy, A. L., Recherches sur l'équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques, Bulletin de la Socié té philomathique de Paris, 1823, pp. 9-13
  28. Navier, C. L., Mémoire sur les lois du mouvement des fluides, Mémoires de l'Académie Royale des Sciences de l'Institut de France, 6 (1822), 1822, pp. 375-394
  29. Frisch, U., Turbulence, Cambridge University Press, New York, USA, 1995

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence