THERMAL SCIENCE
International Scientific Journal
THE VECTOR POWER-LAW CALCULUS WITH APPLICATIONS IN POWER-LAW FLUID FLOW
ABSTRACT
In this article, based on the Leibniz derivative and Stieltjes-Riemann integral, we suggest the vector power-law calculus to consider the conservations of the mass and angular momentums for the power-law fluid.
KEYWORDS
PAPER SUBMITTED: 2020-05-01
PAPER REVISED: 2020-05-20
PAPER ACCEPTED: 2020-05-27
PUBLISHED ONLINE: 2020-11-27
THERMAL SCIENCE YEAR
2020, VOLUME
24, ISSUE
Issue 6, PAGES [4289 - 4302]
- Avnir, D., et al., Is the Geometry of Nature Fractal?, Science, 279 (1998), 5347, pp. 39-40
- Mandelbrot, B. B., et al., Is Nature Fractal?, Science, 279 (1998), 5352, pp. 783-783
- Paladin, G., et al., Anomalous Scaling Laws in Multifractal Objects, Physics Reports, 156 (1987), 4, pp. 147-225
- Louis, E., et al., The Fractal Nature of Fracture, Europhysics Letters, 3 (1987), 8, 871
- Sahimi, M., et al., Scaling Laws for Fracture of Heterogeneous Materials and Rock, Physical Review Letters, 77 (1996), 17, 3689
- Mandelbrot, B., How Long is the Coast of Britain? Statistical Self-similarity and Fractional Dimension, Science, 156 (1967), 3775, pp. 636-638
- Yang, X. J., et al., Local Fractional Integral Transforms and Their Applications, Academic Press, New York, USA, 2015
- Mandelbrot, B. B., Fractal Geometry: What Is It, and What Does It Do?, Proceedings of the Royal Society of London A, 423 (1989), 1864, pp. 3-16
- Hausdorff, F., Dimension und außeres Maß, Mathematische Annalen, 79 (1918), 1-2, pp. 157-179
- Chen, W., Time-Space Fabric Underlying Anomalous Diffusion, Chaos, Solitons & Fractals, 28 (2006), 4, pp. 923-929
- Balankin, A. S. Stresses and Strains in a Deformable Fractal Medium and in Its Fractal Continuum Model, Physics Letters A, 377 (2013), 38, pp. 2535-2541
- He, J. H., Fractal Calculus and Its Geometrical Explanation, Results in Physics, 10 (2018), 2, pp. 272-276
- Tarasov, V. E., Continuous Medium Model for Fractal Media, Physics Letters A, 336 (2005), 2-3, pp. 167-174
- Ostoja-Starzewski, M., Towards Thermomechanics of Fractal Media, Zeitschrift für angewandte Mathematik und Physik, 58 (2007), 6, pp. 1085-1096
- Leibniz, G. W., Memoir Using the Chain Rule, 1676
- Stieltjes, T. J., Recherches Sur les Fractions Continues, Comptes Rendus de l'Académie des Sciences Series I -Mathematics, 118 (1894), 1894, pp. 1401-1403
- Riemann, B., Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Dieterich, Gottingen, 1867
- Yang, X. J., et al., New Mathematical Models in Anomalous Viscoelasticity From the Derivative with Respect to Another Function View Point, Thermal Science, 23 (2019), 3A, pp. 1555-1561
- Yang, X.J., Theory and Applications of Special Functions for Scientists and Engineers, Springer Nature, New York, USA, 2021
- Liang, Y., et al., A Time-space Hausdorff Derivative Model for Anomalous Transport in Porous Media, Fractional Calculus and Applied Analysis, 22 (2019), 6, pp. 1517-1536
- Yang, X. J., New Non-conventional Methods for Quantitative Concepts of Anomalous Rheology, Thermal Science, 23 (2019), 6B, pp. 4117-4127
- Gauss C. F.,Theoria Attractionis Corporum Sphaeroidicorum Ellipticorum Homogeneorum Methodo Novo Tractata, Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores, 2 (1813), pp. 2-5
- Green, G., An Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism, Wezäta-Melins Aktiebolag, Notingham,1828
- Stokes, G. G. A Smith's prize paper, Cambridge University, Calendar, Cambridge, UK, 1854
- Stokes, G. G., On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids, Transactions of the Cambridge Philosophical Society, 8 (1845), 2, pp. 287-305
- Stockes, G. G., On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Transactions of the Cambridge Philosophical Society, 9 (1851), 2, pp. 8-106
- Reynolds, O., The Sub-Mechanics of the Universe, Cambridge University Press, Cambridge, UK, 1903
- Euler, L., Principes Généraux du Mouvement des Fluides, Mémoires de l'académie des sciences de Berlin, 11 (1757), 1757, pp. 274-315
- Lagrange, J. L.,Mémoire sur la Théorie du Mouvement des Fluides, Académie de Berlin, Mémoires, 4 (1781), 1781, pp. 695-748
- Cauchy, A. L., Recherches sur l'équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques, Bulletin de la Société philomathique de Paris, 9-13, 1823
- Cauchy, A. L., De la Pression ou Tension dans un Corps Solide, Exercices de Mathématiques, 2 (1827), 1827, pp. 42-56
- Navier, C. L., Mémoire sur les lois du mouvement des fluides, Mémoires de l'Académie Royale des Sciences de l'Institut de France, 6 (1822), 1822, pp. 375-394