International Scientific Journal

Authors of this Paper

External Links


In this article, based on the Leibniz derivative and Stieltjes-Riemann integral, we suggest the vector power-law calculus to consider the conservations of the mass and angular momentums for the power-law fluid.
PAPER REVISED: 2020-05-20
PAPER ACCEPTED: 2020-05-27
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2020, VOLUME 24, ISSUE Issue 6, PAGES [4289 - 4302]
  1. Avnir, D., et al., Is the Geometry of Nature Fractal?, Science, 279 (1998), 5347, pp. 39-40
  2. Mandelbrot, B. B., et al., Is Nature Fractal?, Science, 279 (1998), 5352, pp. 783-783
  3. Paladin, G., et al., Anomalous Scaling Laws in Multifractal Objects, Physics Reports, 156 (1987), 4, pp. 147-225
  4. Louis, E., et al., The Fractal Nature of Fracture, Europhysics Letters, 3 (1987), 8, 871
  5. Sahimi, M., et al., Scaling Laws for Fracture of Heterogeneous Materials and Rock, Physical Review Letters, 77 (1996), 17, 3689
  6. Mandelbrot, B., How Long is the Coast of Britain? Statistical Self-similarity and Fractional Dimension, Science, 156 (1967), 3775, pp. 636-638
  7. Yang, X. J., et al., Local Fractional Integral Transforms and Their Applications, Academic Press, New York, USA, 2015
  8. Mandelbrot, B. B., Fractal Geometry: What Is It, and What Does It Do?, Proceedings of the Royal Society of London A, 423 (1989), 1864, pp. 3-16
  9. Hausdorff, F., Dimension und außeres Maß, Mathematische Annalen, 79 (1918), 1-2, pp. 157-179
  10. Chen, W., Time-Space Fabric Underlying Anomalous Diffusion, Chaos, Solitons & Fractals, 28 (2006), 4, pp. 923-929
  11. Balankin, A. S. Stresses and Strains in a Deformable Fractal Medium and in Its Fractal Continuum Model, Physics Letters A, 377 (2013), 38, pp. 2535-2541
  12. He, J. H., Fractal Calculus and Its Geometrical Explanation, Results in Physics, 10 (2018), 2, pp. 272-276
  13. Tarasov, V. E., Continuous Medium Model for Fractal Media, Physics Letters A, 336 (2005), 2-3, pp. 167-174
  14. Ostoja-Starzewski, M., Towards Thermomechanics of Fractal Media, Zeitschrift für angewandte Mathematik und Physik, 58 (2007), 6, pp. 1085-1096
  15. Leibniz, G. W., Memoir Using the Chain Rule, 1676
  16. Stieltjes, T. J., Recherches Sur les Fractions Continues, Comptes Rendus de l'Académie des Sciences Series I -Mathematics, 118 (1894), 1894, pp. 1401-1403
  17. Riemann, B., Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Dieterich, Gottingen, 1867
  18. Yang, X. J., et al., New Mathematical Models in Anomalous Viscoelasticity From the Derivative with Respect to Another Function View Point, Thermal Science, 23 (2019), 3A, pp. 1555-1561
  19. Yang, X.J., Theory and Applications of Special Functions for Scientists and Engineers, Springer Nature, New York, USA, 2021
  20. Liang, Y., et al., A Time-space Hausdorff Derivative Model for Anomalous Transport in Porous Media, Fractional Calculus and Applied Analysis, 22 (2019), 6, pp. 1517-1536
  21. Yang, X. J., New Non-conventional Methods for Quantitative Concepts of Anomalous Rheology, Thermal Science, 23 (2019), 6B, pp. 4117-4127
  22. Gauss C. F.,Theoria Attractionis Corporum Sphaeroidicorum Ellipticorum Homogeneorum Methodo Novo Tractata, Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores, 2 (1813), pp. 2-5
  23. Green, G., An Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism, Wezäta-Melins Aktiebolag, Notingham,1828
  24. Stokes, G. G. A Smith's prize paper, Cambridge University, Calendar, Cambridge, UK, 1854
  25. Stokes, G. G., On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids, Transactions of the Cambridge Philosophical Society, 8 (1845), 2, pp. 287-305
  26. Stockes, G. G., On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Transactions of the Cambridge Philosophical Society, 9 (1851), 2, pp. 8-106
  27. Reynolds, O., The Sub-Mechanics of the Universe, Cambridge University Press, Cambridge, UK, 1903
  28. Euler, L., Principes Généraux du Mouvement des Fluides, Mémoires de l'académie des sciences de Berlin, 11 (1757), 1757, pp. 274-315
  29. Lagrange, J. L.,Mémoire sur la Théorie du Mouvement des Fluides, Académie de Berlin, Mémoires, 4 (1781), 1781, pp. 695-748
  30. Cauchy, A. L., Recherches sur l'équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques, Bulletin de la Société philomathique de Paris, 9-13, 1823
  31. Cauchy, A. L., De la Pression ou Tension dans un Corps Solide, Exercices de Mathématiques, 2 (1827), 1827, pp. 42-56
  32. Navier, C. L., Mémoire sur les lois du mouvement des fluides, Mémoires de l'Académie Royale des Sciences de l'Institut de France, 6 (1822), 1822, pp. 375-394

© 2023 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence