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In this article, based on the Leibniz derivative and Stieltjes-Riemann integral, we 
suggest the vector power-law calculus to consider the conservations of the mass 
and angular momentums for the power-law fluid. 
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Introduction

Fractals are beautiful mathematical constructs, described by the scaling law [1], which 
is a mathematical relationship to the complex behaviors in the nature phenomena [2], where this 
description is related to the theory of dynamical systems [3] in condensed matter problems [4], 
and in the statistical mechanics of disordered systems [5]. 

In 1967, Mandelbrot structured the Mandelbrot scaling law, given [6]:

	 1( ) Dt tφ κ −= 	 (1)

where (0, )κ ∈ +∞  is the normalization constant, (0, )t∈ +∞  is the radius or scale, and (0, )D∈ +∞  
is the fractal dimension.

The theory of the functions related to fractals [7] has been developed in the different 
descriptions for the scaling law, which is considered by the measures [8], which is relevant to 
Hausdorff measure [9], where this quantitation is related to the power-law. The Hausdorff deriv-
ative in the Hausdorff space was proposed in [10]. The fractal derivative in the scaling law was 
considered in [11]. The metric derivative in the metric space was proposed in [11]. The vector 
calculus based on the Riemann-Liouville fractional derivative was proposed in [12] and further 
developed in [13, 14].

The scaling-law calculus is one of the hot topics on the theory of the calculus with 
respect to monotone functions, which includes the Leibniz derivative [15] and Stieltjes- 
-Riemann integral [16] based on the Riemann work [17]. The power-law calculus was pro-
posed in 2019 [18] and further developed in 2020 [19] based on the Leibniz derivative [15] and 
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Stieltjes-Riemann integral [16]. Moreover, the power-law derivative is equal to the Hausdorff 
derivative without the strict proof that was proposed in [20, 21]. 

The target of the paper is to propose the theory of the vector power-law calculus based 
on the calculus with respect to monotone functions, to give the generalized integral transforms, 
and to present the novel application to the power-law fluid-flow. 

The results on the calculus with respect to monotone functions

In this section, we introduce the power-law differential calculus and power-law inte-
gral calculus. 

Let ( ) ( )( ) [ ( )]t t tω ω ωΦ = Φ = Φ , where ( )tω  is the monotone function, e. g., 
(1) ( ) d ( )/d 0t t tω ω= > . Let ( )ΦA  be the set of the continuous functions ( )ωΦ  in the domain ℵ. 

Let ( )ωM  be the set of the continuous derivatives of the functions ( )tω  in the domain ℑ. Let 
( ) ( )( ) [ ( )]t t tϕ ϕ ϕΦ = Φ = Φ .

Let us consider the sets of the composite functions, given as below:

	 [ ]( ) ( ) : ( ) ( ), ( )t tω ω ω ω ω ϕℵ Φ = Φ Φ ∈ ∈M A 	 (2)

The calculus with respect to monotone functions 

Let ( )ω ωΦ ∈ℵ Φ . The Leibniz derivative of the function ( )tωΦ  is defined [15, 18, 20]:

	 ( )1
(1)

d ( )1( )
d( )

L
t

tD t
tt
ω

ω ω
Φ

Φ = 	 (3)

The geometric interpretations of the Leibniz derivative is the rate of change of the 
functional ( )ωΦ  with the function ( )tω  in the independent variable t [18, 19]. It is to say, the 
slope of the functional ( )ωΦ  with the function ( )tω  in the independent variable t [18, 19].

Let ( )ω ωΦ ∈ℵ Φ . The Stieltjes-Riemann integral of the function ( )tωΘ  is defined  
[16, 18, 19]:

	 (1) (1)( ) ( ) ( )d
b

L
a b

a

I t t t tω ω ωΘ = Θ∫ 	 (4)

Similarly, the geometric interpretations of the Stieltjes-Riemann integral is the area 
enclosed by the integrand function ( )ωΦ  and the function ( )tω  in the independent variable 

[ , ]t a b∈ [18, 19].

The power-law calculus

Let ( ) Dt tω = , where D is the fractal dimension.
Let ( )ω ωΦ ∈ℵ Φ . The power-law derivative of the function ( )tωΦ  is defined [18, 20]:

	
1

(1) d ( )( )
d

D
PL

t
ttD t

D t
ω

ω

− Φ
Φ = 	 (5)

It is not difficult to show that the geometric interpretations of the power-law derivative 
is the rate of change of the functional ( )ωΦ  with the function ( ) Dt tω =  in the independent vari-
able t [21].

Let ( )ω ωΦ ∈ℵ Φ . The power-law differential of the function ( )tωΦ , denoted by 
d ( )tωΦ , is given:

	 1 (1)d ( ) ( )dD PL
tt Dt D t tω ω

−Φ = Φ 	 (6)



Yang, X.-J.: The Vector Power-Law Calculus with Applications in Power-Law Fluid Flow 
THERMAL SCIENCE: Year 2020, Vol. 24, No. 6B, pp. 4289-4302	 4291

Let ( )ω ωΦ ∈ℵ Φ . The power-law integral of the function ( )tωΘ  is defined [18, 19]:

	 (1) 1( ) ( ) d
b

PL D
a b

a

I t D t t tω ω
−Θ = Θ∫ 	 (7)

Similarly, it is shown that the geometric interpretations of the power-law integral is 
the area enclosed by the integrand function ( )ωΦ  and the function ( ) Dt tω =  in the independent 
variable [ , ]t a b∈  [21].

Let ( )ω ωΦ ∈ℵ Φ . The indefinite power-law integral of the function ( )tϕΘ  is defined:

	 (1) 1( ) ( ) dPL D
tI t D t Dt tω ω

−Θ = Θ∫ 	 (8)

Let ( )ω ωΘ ∈ℵ Φ  and ( )ω ωΠ ∈ℵ Π . The properties of the power-law differential cal-
culus used in this paper can be presented as follows [18,19]:

(Y1) The product rule for the power-law derivative [15]:

	 (1) (1) (1)[ ( ) ( )] ( ) ( ) ( ) ( )PL PL PL
t t tD t t t D t t D tω ω ω ω ω ωΘ ⋅Π = Π Θ +Θ Π 	 (9)

(Y2) The chain rule for the power-law derivative:

	 (1) (1) (1){ [ ( )]} ( ) ( )PL PL
t tD w t w D tω ω ωΘ = Θ ⋅ Θ 	 (10)

where (1) ( ) d ( )/dw wω ω ωΘ = Θ Θ  exists.

The power-law partial derivatives, power-law gradients  
and directional power-law derivative

Let us consider the power-law co-ordinate system, given as 31 2 DD Dix jy kz+ + =
31 2[ , , ]DD Dx y z= , where 1D , 2D  and 3D  are the fractal dimensions, and i, j, and k  are the unit 

vector in the Cartesian co-ordinate system. 
Let us consider the function, defined by 1 2 3 31 2( , , ) ( , , ) ( , , )D D D DD Dx y z x y zω ωψ ψ ψ= = . 
The power-law partial derivatives of the function ( , , )x y zω ωψ ψ=  are defined:

    
11

(1)

1

D
PL

x
x
D xω ωψ ψ
− ∂

∂ =  
∂ 

, 
21

(1)

2

D
PL

y
y
D yω ωψ ψ
− ∂

∂ =  
∂ 

, 
31

(1)

2

D
PL

z
z
D zω ωψ ψ
− ∂

∂ =  
∂ 

,	 (11a,b,c)

where ( , , ) ( , , ) ( , , )D D D D D Dx y z x y zωψ ψ ψ= = .
The total power-law differential of the function ( , , )x y zω ωψ ψ=  is defined:

	 31 2 11 (1) 1 (1) (1)
1 2 3d [ ]d [ ]d [ ]dDD PL D PL PL

x y zD x x D y y D z zω ω ω ωψ ψ ψ ψ−− −= ∂ + ∂ + ∂ 	 (12)

Thus, the power-law derivative with respect to the time t is given:

	 31 2 11 (1) 1 (1) (1)
1 2 3

d d d d
d d d d

DD PL D PL PL
x y z

x y zD x D x D x
t t t t
ω

ω ω ω
ψ

ψ ψ ψ−− −     = ∂ + ∂ + ∂      	 (13)

The power-law gradient of first type in the Cartesian co-ordinate system is defined:

	 1 2 3 31 2( , , ) 11 (1) 1 (1) (1)
1 2 3( ) ( ) ( )D D D DD PL D PL PL

x y zi D x j D y k D z −− −∇ = ∂ + ∂ + ∂ 	 (14)

which deduces that the power-law gradient of second type in the Cartesian co-ordinate system:

	 ( ) 1 (1) 1 (1) 1 (1)( ) ( ) ( )D D PL D PL D PL
x y zi Dx j Dy k Dz− − −∇ = ∂ + ∂ + ∂ 	 (15)
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The power-law gradient of first type of the scalar field ( , , )x y zω ωψ ψ=  reads:

	 1 2 3 31 2( , , ) 11 (1) 1 (1) (1)
1 2 3( ) ( ) ( )D D D DD PL D PL PL

x y zi D x j D y k D zω ω ω ωψ ψ ψ ψ−− −∇ = ∂ + ∂ + ∂ 	 (16)

Similarly, the power-law gradient of second type of the scalar field ψ  can be written:

	 ( ) 1 (1) 1 (1) 1 (1)( ) ( ) ( )D D PL D PL D PL
x y zi Dx j Dy k Dzψ ψ ψ ψ− − −∇ = ∂ + ∂ + ∂ 	 (17)

From eqs. (16) and (17) we have that:

	 1 2 3 1 2 3( , , ) ( , , )d dD D D D D D rω ω ωψ ψ ψ= ∇ = ∇dr n   and ( ) ( )d dD D rψ ψ ψ= ∇ = ∇dr n  ,	(18a,b)

with d d d dr i x j y k z= = + +dr n , where n is the unit normal, and dr is a distance measured along 
the normal n. 

The directional power-law derivative of the function ( , , )x y zω ωψ ψ= , denoted by 
1 2 3( , , )D D D

n ωψ∇ , is defined:

	 1 2 3 1 2 3( , , ) ( , , )d
d

D D D D D D
nr

ω
ω ω

ψ
ψ ψ= ∇ = ∂n 	 (19)

which leads to:

	 ( ) ( )d
d

D D
nr

ψ ψ ψ= ∇ = ∂n 	 (20)

where d /drωψ  and d /drψ  are the rates of changes of ωψ  and ψ  along the normal n, 
respectively. 

The power-law Laplace-like operator of first type, denoted as 1 2 3 1 2 3( , , ) ( , , )D D D D D D∇ ∇ =

1 2 3(2 ,2 ,2 )D D D= ∇ , of the scalar field ωψ  is defined:

   1 2 3 31 2
22 2(2 ,2 ,2 ) 11 (1) 1 (1) (1)

1 2 3( ) ( ) ( )D D D DD PL D PL PL
x y zD x D y D zω ω ω ωψ ψ ψ ψ−− −     ∇ = ∂ + ∂ + ∂      	 (21)

In a similar way, the power-law Laplace-like operator of second type, denoted as 
(2 ) ( ) ( )D D D∇ = ∇ ∇ , of the scalar field ψ  is defined:

	
2 2 2(2 ) 1 (1) 1 (1) 1 (1)( ) ( ) ( )D D PL D PL D PL

x y zDx Dy Dzψ ψ ψ ψ− − −     ∇ = ∂ + ∂ + ∂      	 (22)

The properties for the power-law gradient of first type read:

	 1 2 3 1 2 3 1 2 3( , , ) ( , , ) (2 ,2 ,2 )D D D D D D D D D
ω ωψ ψ ∇ ∇ = ∇  	 (23)

	 1 2 3 1 2 3 1 2 3( , , ) ( , , ) ( , , )( )D D D D D D D D D
ω ω ω ω ω ωψ ψ ψ∇ Θ = ∇ Θ +Θ ∇ 	 (24)

	 ( )1 2 3 1 2 3 1 2 3 1 2 3 1 2 3( , , ) ( , , ) (2 ,2 ,2 ) ( , , ) ( , , )D D D D D D D D D D D D D D D
ω ω ω ω ω ωψ ψ ψ∇ Θ ∇ = Θ ∇ +∇ ∇ Θ  	 (25)

where ωψ  and ωΘ  are the scalar fields. 
The properties for the power-law gradient of second type can be given:

	 ( ) ( ) (2 )D D Dψ ψ ∇ ∇ = ∇  ,   ( ) ( ) ( )( )D D D
ωψ ψ ψ∇ Θ = ∇ Θ +Θ ∇ 	 (26a,b)

	 ( ) ( )( ) ( ) ( ) ( )2D D D D Dψ ψ ψ∇ Θ∇ = Θ∇ +∇ ∇ Θ  	 (27)

where ψ  and Θ are the scalar fields. 
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Theory of the vector power-law calculus

The element of the vector line 31 2( , , ) ( , , )DD Dx y z x y zω= =    is given:

	 31 2 11 1
1 2 3d ( )d ( )d ( )dDD Di D x x j D y y k D z z−− −= = + +dl m  	 (28)

and

	 ( ) ( ) ( )31 22 2 211 2 1 2 2
1 2 3d ( ) d ( ) d ( ) dDD DD x x D y y D z z−− −= = + +dl 	 (29)

where m is the vector with | | 1=m .
The arc length 0 d= ∫



   from t a=  to t b=  is given:

	 ( ) ( ) ( )31 2

2 2 222 2 11 1
1 2 3

d d d d
d d d

b
DD D

a

x y zD x D y D z t
t t t

−− −     = + +     
     ∫ 	 (30)

The line power-law integral of the vector field

The line power-law integral of the vector field ( , , )x y zω=T T  along the curve
31 2( , , ) ( , , )DD DL x y z L x y z= , denoted byB, is defined:

	 ( )
( ), ,

, ,
L x y z

x y zω= ∫ dT lB 	 (31)

where 31 2( , , ) ( , , )DD D
x y zx y z x y z T i T j T kω= = = + +T T T , and the element of the vector line is:

	 31 2 11 1
1 2 3( )d ( )d ( )d d ( ) d ( ) d ( )DD Di D x x j D y y k D z z i x j y k zζ ξ−− −= + + = + +dl  	 (32)

With use of eq. (61), we get:

	
( , , ) ( , , ) ( )

( , , ) d
dL x y z L x y z L t

x y z t
tω= =∫ ∫ ∫

dd d lT l T l T   	 (33)

where 31 2 11 1
1 2 3/d ( )d /d ( )d /d ( )d /dDD Dt i D x x t j D y y t k D z z t−− −= + +dl .

Therefore, by using eqs. (32), (31) can be presented as follows:

	 31 2 11 1
1 2 3

( , , ) ( , , )

( )d ( )d ( )dDD D
x y z

L x y z L x y z

T D x x T D y y T D z z−− −= + +∫ ∫dT l 	 (34)

The vector field ( , , )x y zω=T T  in 31 2( , , ) ( , , )DD DL x y z L x y z=  is said to be conserva-
tive if:

	
( , , )

0
L x y z

=∫ dT l


	 (35)

The double power-law integral of the scalar field

The double power-law integral of the scalar field 1 2( , ) ( , )D Dx y x yωΘ = Θ  on the region
1 2( , ) ( , )D DS x y S x y= , denoted by ( )A Θ , is defined:

	
( ),

( ) ( , )d
S x y

A x y SωΘ = Θ∫∫ 	 (36)

where 1 21 1
1 2d ( )( )d dD DS D x D y x y− −= . 
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When 1( ) Dx x=  and 2( ) Dy yζ = , we have:

	 1 21 1
1 2d ( )( )d d d ( )d ( )D DS D x D y x y x yζ− −= =  	 (37)

It is shown from eqs. (36) and (37) that:

	

1 2

2 1

1 1
1 2

( , )

1 1
2 1

( , )d ( , )( )d ( )d

( , )( )d ( )d

d b
D D

S x y c a

b d
D D

a c

x y S x y D x x D y y

x y D y y D x x

ω ω

ω

− −

− −

 
Θ = Θ 

  

 
= Θ 

  

∫∫ ∫ ∫

∫ ∫ 	 (38)

where [ , ]x a b∈  and [ , ]y c d∈ .

The volume power-law integral of the scalar field

The volume power-law integral of the scalar field 31 2( , , ) ( , , )DD Dx y z x y zωΘ = Θ  is 
defined:

	
( , , )

( ) ( , , )d
x y z

V x y z Vω
Ω

Θ = Θ∫∫∫ 	 (39)

with

	 31 2 11 1
1 2 3d ( )( )( )d d d d ( )d ( )d ( )DD DV D x D y D z x y z x y zζ ξ−− −= =  	

where 1( ) Dx x= , 2( ) Dy yζ = , and 3( ) Dz zξ = . 
Thus, we have:

	

3 2 1

31 2

32 1

1 1 1
3 2 1

( , , )

11 1
1 3 2

11 1
2 1 3

( , , )d ( )d ( )d ( , , )( )d

( )d ( )d ( , , )( )d

( )d ( )d ( , , )( )d

d b
D D D

x y z c a

d b
DD D

c a
d b

DD D

c a

x y z V D z z D y y x y z D x x

D x x D z z x y z D y y

D y y D x x x y z D z z

β

ω ω
α

β

ω
α
β

ω
α

− − −

Ω

−− −

−− −

Θ = Θ

= Θ

= Θ

∫∫∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫ 	 (40)

where [ , ]x a b∈ , [ , ]y c d∈ , and [ , ]z α β∈ .

The surface power-law integral of the vector field

The surface power-law integral of the vector field 31 2( , , ) ( , , )DD Dx y z x y zω =ψ ψ  is 
defined:

	
( , , ) ( , , )

( , , ) ( , , ) d
x y z x y z

x y z x y z Sω ω=∫∫ ∫∫d
S S

S n ψ ψ 	 (41)

where /dS= dn S  is the unit normal vector to the surface 31 2( , , ) ( , , )DD Dx y z x y z=S S .
Let us consider that /| | /dS= =d d dn S S S , d | |S = dS , and

   3 32 1 1 21 11 1 1 1
2 3 1 3 1 2

d ( )d ( ) d ( )d ( ) d ( )d ( )

( )( )d d ( )( )d d ( )( )d dD DD D D D

y z i x z j x y k

i D y D z y z j D x D z x z k D x D y x y

ζ ξ ξ ζ
− −− − − −

= + +

= + +

dS  

	 (42)
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where 32 11
2 3d ( )d ( ) ( )( )d dDDy z D y D z y zζ ξ −−= , 31 11

1 3d ( )d ( ) ( )( )d dDDx z D x D z x zξ −−= , and 
1 21 1

1 2d ( )d ( ) ( )( )d dD Dx y D x D y x yζ − −= . 
Thus, we may have from eqs. (41) and (42) that:

	
( , , ) ( , , )

( , , ) d ( )d ( ) d ( )d ( ) d ( )d ( )x y z
x y z S x y z

x y z y z x z x yω ψ ζ ξ ψ ξ ψ ζ= + +∫∫ ∫∫d
S

S  ψ 	 (43)

where 31 2( , , ) ( , , )DD D
x y zx y z x y z i j kω ψ ψ ψ= = = + +ψ ψ ψ . 

The flux of the vector field ( , , )x y zω=ψ ψ  across the surface dS , denoted by Φ , is 
defined:

	
( , , )x y z

= ∫ d
S

S


Φ ψ 	 (44)

The power-law divergence of the vector field

The power-law divergence of the vector field ψ  is defined:

	 1 2 3( , , )

0
( , , )

1lim
m

m

D D D

V m x y zV∆ →
∆

∇ =
∆ ∫∫ d

S

S 



ψ ψ 	 (45)

where the volume V  is divided into a large number of small subvolumes mV∆  with surfaces 
( , , )m x y z∆S , ψ  is a continuously differentiable vector field, and dS is an element of the surface 

( , , )x y zS  bounding the solid ( , , )x y zΩ . 
With use of (14), (45) can be written:

	 1 2 3 31 2( , , ) 11 (1) 1 (1) (1)
1 2 3( ) ( ) ( )D D D DD PL D PL PL

x x y y z zi D x j D y k D zψ ψ ψ−− −∇ = ∂ + ∂ + ∂ψ 	 (46)

where 31 2( , , ) ( , , )DD D
x y zx y z x y z i j kω ψ ψ ψ= = = + +ψ ψ ψ . 

The power-law curl of the vector field

The power-law curl of the vector field T is defined:

	 1 2 3( , , )

( , , ) 0
( , , )

1lim ( , , )
( , , )m

m

D D D

S x y z m L x y z

x y z
S x y z ω

∆ →
∆

∇ × =
∆ ∫ dT T l



	 (47)

where 31 2( , , ) ( , , )DD D
x y zx y z x y z T i T j T kω= = = + +T T T  be a continuously differentiable vector 

field, dl – the element of the vector line, ( , , )mS x y z∆  is a small surface element perpendicular 
to n, ( , , )mL x y z∆  – the closed curve of the boundary of ( , , )mS x y z∆ , and n are oriented in a 
positive sense.

Similarly, eq. (47) can be represented:

	 1 2 3 31 2( , , ) 11 (1) 1 (1) (1)
1 2 3( ) ( ) ( )D D D DD PL D PL PL

x y z

x y z

i j k

D x D y D z
T T T

−− −

 
 

∇ × = ∂ ∂ ∂ 
 
 

T 	 (48)

where 31 2( , , ) ( , , )DD D
x y zx y z x y z T i T j T kω= = = + +T T T . 

The Gauss-like theorem

From the definition of eq. (45), we present the Gauss-like theorem as follows.
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Let us consider that:

	
( )( , , ) , ,

d d ( )d ( ) d ( )d ( ) d ( )d ( )x y z
x y z x y z

S y z x z x yψ ξ ψ ξ ψ ζ= + +∫∫ ∫∫
S S

n   

 

ψ 	

The Gauss-like theorem states that:

	 1 2 3( , , )

( , , ) ( , , )

d dD D D

x y z x y z

V S
Ω

∇ =∫∫∫ ∫∫
S

n 



ψ ψ 	 (49)

where ψ  is a continuously differentiable vector field, dV  denotes an element of volume 
( , , )x y zΩ , n is the unit outward normal to ( , , )x y zS , and dS is an element of the surface area of 

the surface ( , , )x y zS  bounding the solid ( , , )x y zΩ . 
Taking dS=dS n , we have from eq. (49) that:

	 1 2 3( , , )

( , , ) ( , , )

dD D D

x y z x y z

V
Ω

∇ =∫∫∫ ∫∫ d
S

S 



ψ ψ    and   ( )

( , , ) ( , , )

dD

x y z x y z

V
Ω

∇ =∫∫∫ ∫∫ d
S

S 



ψ ψ 	 (50a,b)

It is illustrated that eq. (50b) is the case of eq. (50a) when 1 2 3D D D D= = = . 
From the definition of eq. (48), we present the Stokes-like theorem as follows.

The Stokes-like theorem 

Let us consider that:

	 31 2 11 1
1 2 3

( , , ) ( , , )

( )d ( )d ( )dDD D
x y z

L x y z L x y z

T D x x T D y y T D z z−− −= + +∫ ∫dl
 

ψ 	

The Stokes-like theorem states that:

	 1 2 3( , , )

( , , ) ( , , )

dD D D

S x y z L x y z

S ∇ × = ∫∫ ∫ dn l 



ψ ψ 	 (51)

where ψ  is a constant vector field, ( , , )S x y z  denotes an open, two sided curve surface, ( , , )L x y z  
represents the closed contour bounding S, and dl denotes the element of the vector line.

Taking dS=dS n , we show from eq. (51) that:

    1 2 3( , , )

( , , ) ( , , )

dD D D

S x y z L x y z

S ∇ × = ∫∫ ∫ dn l 



ψ ψ  and ( )

( , , ) ( , , )

dD

S x y z L x y z

S ∇ × = ∫∫ ∫ dn l 



ψ ψ 	 (52a,b)

It is shown that eq. (52b) is the case of eq. (52a) when 1 2 3D D D D= = = .

The Green-like theorem 

The Green-like theorem states:

	 { }

1 2

1 2

1 1
1 2

( , )

1 (1) 1 (1)
1 2

( , )

( )d ( )d

[ ] [ ] d ( )d ( )

D D
x y

L x y

D PL D PL
x y y x

S x y

T D x x T D y y

D x T D y T x yζ

− −

− −

+ =

= ∂ − ∂

∫

∫∫ 



	 (53)

where ( , )S x y  is the domain bounded by the contour ( , )L x y , and x yT i T j= +T .
When 1 2 3D D D D= = = , we have that:

	 1 1 1 (1) 1 (1) 1 1

( , , ) ( , )

d d d dD D D PL D PL D D
x y x y y x

L x y z S x y

T x x T y y D x T y T x y x y− − − − − − + = ∂ − ∂ ∫ ∫∫

	 (54)
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The Green-like identities

Taking 1 2 3( , , )D D DΦ = Θ∇ Φ, we have that:

	 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3( , , ) ( , , ) (2 ,2 ,2 ) ( , , ) ( , , )D D D D D D D D D D D D D D D ∇ Θ∇ Φ = Θ∇ Φ +∇ Φ ∇ Θ   	 (55)

and

	 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3( , , ) ( , , ) (2 ,2 ,2 ) ( , , ) ( , , )D D D D D D D D D D D D D D D ∇ Φ∇ Θ = Φ∇ Θ +∇ Φ ∇ Θ   	 (56)

where 31 2( , , ) ( , , )DD Dx y z x y zωΦ = Φ = Φ  and 31 2( , , ) ( , , )DD Dx y z x y zωΘ = Θ = Θ  are the scalar 
fields.

With the use of eq. (49), the Green-like identity of first type can be given:

	

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3

( , , ) (2 ,2 ,2 ) ( , , ) ( , , )

( , , )

( , , )

( , , )

d

d

D D D D D D D D D D D D

x y z

D D D
n

x y z

V

S
Ω

 ∇ Θ∇ Φ +∇ Φ ∇ Θ = 

= Θ∂ Φ

∫∫∫

∫∫
S

 



	 (57)

In a similar way, we have that:

	

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3

( , , ) (2 ,2 ,2 ) ( , , ) ( , , )

( , , )

( , , )

( , , )

d

d

D D D D D D D D D D D D

x y z

D D D
n

x y z

V

S
Ω

 ∇ Φ∇ Θ +∇ Φ ∇ Θ = 

= Φ∂ Θ

∫∫∫

∫∫
S

 



	 (58)

which reduces to the Green-like identity of second type, given:

	

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

( , , ) (2 ,2 ,2 ) (2 ,2 ,2 )

( , , )

( , , ) ( , , )

( , , )

d

d

D D D D D D D D D

x y z

D D D D D D
n n

x y z

V

S

Ω

 ∇ Θ∇ Φ −Φ∇ Θ = 

 = Θ∂ Φ −Φ∂ Θ 

∫∫∫

∫∫
S





	 (59)

Taking 1 2 3D D D D= = = , we have from eqs. (57) and (59) that:

	 ( ) (2 ) ( ) ( ) ( )

( , , ) ( , , )

d dD D D D D
n

x y z x y z

V S
Ω

 ∇ Θ∇ Φ +∇ Φ ∇ Θ = Θ∂ Φ ∫∫∫ ∫∫
S

 



	 (60)

and

	 ( ) (2 ) (2 ) ( ) ( )

( , , ) ( , , )

d dD D D D D
n n

x y z x y z

V S
Ω

   ∇ Θ∇ Φ −Φ∇ Θ = Θ∂ Φ −Φ∂ Θ   ∫∫∫ ∫∫
S





	 (61)

Taking 1 2 3 1D D D D= = = = , the Gauss-like, Stokes-like and Green-like theorems 
and Green-like identities become the Gauss [22], Stokes [23], Green theorems and Green iden-
tities [24], respectively.

Applied to describe the power-law fluid flow

Let us consider the power-law co-ordinate system, given as 0 31 2( , , , )D DD D Dt x y z t= +  
31 2 DD Dix jy kz+ + + , where 0D , 1D , 2D , and 3D  are the fractal dimensions, and i, j , and k  are 

the unit vector in the Cartesian co-ordinate system. 
The material power-law derivative of the power-law fluid field.
Let 31 2( , , , ) ( , , , )DD D Dt x y z t x y zωΦ = Φ = Φ  be the power-law type fluid field.
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The total power-law differential of the power-law type scalar field is given:

	

1 2

3 0

1 (1) 1 (1)
1 2

1 1(1) (1)
3 0

d d d

d d

D PL D PL
x y

D DPL PL
z t

D x x D y y

D z z D t t

− −

− −

   Φ = ∂ Φ + ∂ Φ +   
   + ∂ Φ + ∂ Φ    	 (62)

which leads to:

	

1 2

3 0

1 (1) 1 (1)
1 2

1 1(1) (1)
3 0

d
d

D PL D PL
x y

D DPL PL
z t

x yD x D y
t t t

zD z D t
t

− −

− −

Φ ∂ ∂   = ∂ Φ + ∂ Φ +   ∂ ∂
∂ + ∂ Φ + ∂ Φ  ∂

	 (63)

The material power-law derivative 

The material power-law derivative of the power-law fluid density φ  is defined:

	 0 1 2 31 ( , , )(1)
0

D D D DPL
t

D D t
Dt
φ φ φ−= ∂ + ⋅∇υ 	 (64)

where ( / , / , / ) x y zx t y t z t i j kυ υ υ= ∂ ∂ ∂ ∂ ∂ ∂ = + +υ  is the velocity vector. 
For 0 1D =  the material power-law-space derivative of the power-law fluid density φ , 

reads:

	 1 2 3( , , )D D DD
Dt t
φ φ φ∂
= + ⋅∇
∂

υ 	 (65)

which, by using 1 2 3D D D D= = = , leads to:

	 ( )DD
Dt t
φ φ φ∂
= + ⋅∇
∂

υ 	 (66)

For 1 2 3 1D D D= = =  the material power-law-time derivative of the power-law fluid 
density, denoted as, can be given:

	 0 1 (1)
0

D PL
t

D D t
Dt
φ φ φ−= ∂ + ⋅∇υ 	 (67)

It is not difficult to show that the Stokes material derivative, proposed by Stokes in 
1845 to consider the velocity [25] and further developed in 1851 [26], is one of the special cases 
of eqs. (64)-(67) when 1 2 3 0 1D D D D= = = = , and it illustrates the relationship among the 
change in Lagrangian co-ordinate ( , , , )t X Y Z=X , Eulerian co-ordinate ( , , , )t x y z=x , and 
Eulerian-like co-ordinate 0 31 2( , , , )D DD Dt x y z=x  for any fluid field.

The transport theorem for the power-law fluid

From eq. (64) we have that the transport theorem for the power-law fluid, e. g.:

	 0 1 2 31 ( , , )(1)
0

( ) ( )

d dD D D DPL
t

t t

D V D t V
Dt

−

Ω Ω

 Ξ = ∂ Ξ + ⋅∇ Ξ ∫∫∫ ∫∫∫ υ 	 (68)

which, by using eq. (52a), leads to:

	 0 1 (1)
0

( ) ( ) ( )

d dD PL
t

t t t

D V D t V
Dt

−

Ω Ω

Ξ = ∂ Ξ + Ξ∫∫∫ ∫∫∫ ∫∫ d
S

S


υ 	 (69)
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since

	 ( )1 2 3( , , )

( ) ( ) ( )

d dD D D

t t t

V S
Ω

⋅∇ Ξ = Ξ = Ξ∫∫∫ ∫∫ ∫∫ d
S S

n S 

 

υ υ υ 	 (70)

where ( )tS  is the surface of ( )tΩ , n is the unit normal to the surface, υ  is the velocity vector, 
and 0 31 2( , , , ) ( , , , )D DD Dt x y z t x y zωΞ = Ξ = Ξ  is the power-law fluid. 

Here, the Reynolds transport theorem, proposed by in 1903 Reynolds [27], is the spe-
cial case of eqs. (68) and (69) when 1 2 3 0 1D D D D= = = = .

Let us define the mass of the power-law fluid is defined:

	
( )

d
t

V
Ω

=∫∫∫ J H 	 (71)

where 31 2( , , , ) ( , , , )DD D Dt x y z t x y zω= =J J J  and 31 2( , , , ) ( , , , )DD D Dt x y z t x y zω= =H H H .
The conservation of the mass of the power-law fluid is given:

       0 1 2 31 ( , , )(1)
0 0D D D DPL

tD t − ∂ + ⋅∇ =J Jυ   and  ( )0 1 2 31 ( , , )(1)
0 0D D D DPL

tD t − ∂ + ∇ ⋅ =J Jυ 	 (72a,b)

since υ  is the velocity vector (a constant vector), and there is from eqs. (68) and (71):

	 0 1 2 31 ( , , )(1)
0

( ) ( )

d d 0D D D DPL
t

t t

D V D t V
Dt

−

Ω Ω

 = ∂ + ⋅∇ = ∫∫∫ ∫∫∫J J Jυ 	 (73)

Here, the conservation of the mass of the fluid without power-law, proposed by Euler 
in 1757 [28], is the special case of eqs. (72b) and (73), and proposed by Lagrange in 1781 [29], 
is the special case of eq. (72b), where 1 2 3 0 1D D D D= = = = .

Let us consider the velocity gradient tensor for the power-law fluid, defined:

	 1 2 3( , , ) 1 1 1( ) ( ) ( )
2 2 2

D D D ς τ ς τ ς τ∇ = + + − = + −hυ    and   1 2 3( , , ) 0D D Dς = ∇ ⋅ =υ 	 (74a,b)

where the strain tensor for the power-law fluid is defined as ( )/2ς τ= +h  with velocity gradient 
1 2 3( , , )D D Dς = ∇ ⋅υ  and 1 2 3( , , )D D Dτ = ⋅∇υ . 

The stress tensor for the power-law fluid is defined:

	 2p β= − +T I h 	 (75)

where β  are the shear moduli of viscosity, and I is the unit tensor.
It is noted that the strain tensor is the special case, proposed by Cauchy in [30, 31], 

and the Stokes decompose term [25] is the special case of eq. (74), the stress tensor, proposed 
by Stokes in 1845 [25], is the special case of eq. (75) where 1 2 3 0 1D D D D= = = = . 

The conservation of the momentums for the power-law fluid 

The conservation of the linear and angular momentums for the power-law fluid is:

	
( ) ( ) ( )

d d
t t t

D V V
Dt Ω Ω

= +∫∫∫ ∫∫∫ ∫∫ d
S

b T S


Jυ 	 (76)

where b is the specific body force. 
Thus, we have:

	 0 1 2 3 1 2 31 ( , , ) ( , , )(1)
0 ( ) ( )D D D D D D DPL

tD t − ∂ + ⋅∇ ∇ +T bJ J =υ υ υ 	 (77)
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since

	 ( ) ( )0 1 2 3 1 2 31 ( , , ) ( , , )(1)
0

( )

d 0D D D D D D DPL
t

t

D t V−

Ω

 ∂ + ⋅∇ −∇ = ∫∫∫ b TJ J -υ υ υ 	 (78)

where

	 ( ) ( )0 1 2 31 ( , , )(1)
0

( ) ( )

d dD D D DPL
t

t t

D V D t V
Dt

−

Ω Ω

 = ∂ + ⋅∇ ∫∫∫ ∫∫∫J J J Jυ υ υ υ 	 (79)

and

	 1 2 3( , , )

( ) ( )

dD D D

t t

V
Ω

= ∇∫∫ ∫∫∫
S

dT S T 



	 (80)

From eqs. (74a), (74b) and (77) we have:

	 1 2 3 1 2 3 1 2 3( , , ) ( , , ) (2 ,2 ,2 )D D D D D D D D Dp β∇ = −∇ + ∇T υ 	 (81)

such that

	 0 1 2 3 1 2 3 1 2 31 ( , , ) ( , , ) (2 ,2 ,2 )(1)
0

D D D D D D D D D DPL
tD t p β− ∂ + ⋅∇ −∇ + ∇ +  bJ =υ υ υ υ 	 (82)

From eqs. (74a) and (82) we have for 0β = :

         0 1 2 3 1 2 31 ( , , ) ( , , )(1)
0

D D D D D D DPL
tD t p− ∂ + ⋅∇ −∇ +  bJ =υ υ υ   and  1 2 3( , , ) 0D D D∇ ⋅ =υ 	 (83a,b)

Here, the Navier-Stokes equations for the fluid, proposed by Navier in 1822 [32] and 
by Stokes in 1845 [25] are the special cases of eqs. (74b) and (77), and the Euler equations for 
the fluid, proposed by Euler in 1757 [28], are the special cases of eqs. (83a) and (83b), where 

1 2 3 0 1D D D D= = = = . 
Similarly, from eq. (67) we have that:

	 0 1 (1)
0

D PL
t

D D t
Dt

−= ∂ + ⋅∇
υ υ υ υ 	 (84)

Here, the Stokes formula for the fluid, proposed by Stokes in 1845 [25], is the special 
case of eq. (84) for 1 2 3 0 1D D D D= = = = .

Conclusion

In the present work, we have proposed the theory of the vector power-law calculus 
based on the Leibniz, Stieltjes, and Riemann tasks. The Navier-Stokes-like and Euler-like equa-
tions for the power-law fluid were presented based on the conservations of the mass and angular 
momentums for the power-law fluid. The proposed results are proposed as an advanced mathe-
matical tool for decryptions for the power-law physical phenomenon. 
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Nomenclature
b	 –	 specific body force, [Nm–3]
t	 –	 time, [s]
x, y, z	 –	 co-ordinates, [m]

Greek symbol

υ	 –	 velocity vector, [ms–1]
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