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In this article, based on the Leibniz derivative and Stieltjes-Riemann integral, we
suggest the vector power-law calculus to consider the conservations of the mass
and angular momentums for the power-law fluid.
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Introduction

Fractals are beautiful mathematical constructs, described by the scaling law [1], which
is a mathematical relationship to the complex behaviors in the nature phenomena [2], where this
description is related to the theory of dynamical systems [3] in condensed matter problems [4],
and in the statistical mechanics of disordered systems [5].

In 1967, Mandelbrot structured the Mandelbrot scaling law, given [6]:

¢(t)=xt'"" (1)

where « € (0,+00) is the normalization constant, ¢ € (0,+o0) is the radius or scale, and D € (0, +c0)
is the fractal dimension.

The theory of the functions related to fractals [7] has been developed in the different
descriptions for the scaling law, which is considered by the measures [8], which is relevant to
Hausdorff measure [9], where this quantitation is related to the power-law. The Hausdorff deriv-
ative in the Hausdorff space was proposed in [10]. The fractal derivative in the scaling law was
considered in [11]. The metric derivative in the metric space was proposed in [11]. The vector
calculus based on the Riemann-Liouville fractional derivative was proposed in [12] and further
developed in [13, 14].

The scaling-law calculus is one of the hot topics on the theory of the calculus with
respect to monotone functions, which includes the Leibniz derivative [15] and Stieltjes-
-Riemann integral [16] based on the Riemann work [17]. The power-law calculus was pro-
posed in 2019 [18] and further developed in 2020 [19] based on the Leibniz derivative [15] and
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Stieltjes-Riemann integral [16]. Moreover, the power-law derivative is equal to the Hausdorff
derivative without the strict proof that was proposed in [20, 21].

The target of the paper is to propose the theory of the vector power-law calculus based
on the calculus with respect to monotone functions, to give the generalized integral transforms,
and to present the novel application to the power-law fluid-flow.

The results on the calculus with respect to monotone functions

In this section, we introduce the power-law differential calculus and power-law inte-
gral calculus.

Let @,(¢t)=(DPcw)(t)=D[w(t)], where w(¢) is the monotone function, e. g,
oV (t)=dw(t)/dt > 0. Let (D) be the set of the continuous functions ®(w) in the domain N.
Let 97 (w) be the set of the continuous derivatives of the functions @(¢) in the domain 3. Let
D, (1) = (P o)1) = D[e()].

Let us consider the sets of the composite functions, given as below:

R(@,,) =[®,,(1): D, (1) € M(w), 0 € A@))] @)

The calculus with respect to monotone functions

Let ®, e N(®,). The Leibniz derivative of the function @, (¢) is defined [15, 18, 20]:
LDt(l)(Dw(t) _ + do ,(?)
oV(t) dt
The geometric interpretations of the Leibniz derivative is the rate of change of the
functional ®(w) with the function @(¢) in the independent variable ¢ [18, 19]. It is to say, the
slope of the functional ®(w) with the function @(¢) in the independent variable 7 [18, 19].
Let @, e X(®,). The Stieltjes-Riemann integral of the function ®,(¢) is defined
[16, 18, 19]:

G)

b
1o, 0 =[0,nHe" (t)d )

Similarly, the geometric interpretations of the Stieltjes-Riemann integral is the area
enclosed by the integrand function ®(w) and the function @(¢) in the independent variable
tela,b][18, 19].

The power-law calculus

Let a(f) = t°, where D is the fractal dimension.
Let ©, € X(D,). The power-law derivative of the function @, (¢) is defined [18, 20]:

1-D
0 4o, () )
D dt

It is not difficult to show that the geometric interpretations of the power-law derivative
is the rate of change of the functional ®(w) with the function @(¢) = t” in the independent vari-
able 7 [21].

Let @, eN(®,). The power-law differential of the function @ (¢), denoted by
dd (1), is given:

"D, (1) =

do, (1)= D" "DV (1)dt (6)
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Let ®, e R(D,). The power-law integral of the function ® ,(¢) is defined [18, 19]:
b
PLIO® (1) = Dj ®, (N’ dr (7)

Similarly, it is shown that the geometric interpretations of the power-law integral is
the area enclosed by the integrand function ®(w) and the function () = * in the independent
variable ¢ €[a,b] [21].

Let @, e X(®,,). The indefinite power-law integral of the function ©,,(?) is defined:

"1, (t)=D[®,(t)D> dt (8)
Let ©, e X(D,) and IT, e X(I1,). The properties of the power-law differential cal-
culus used in this paper can be presented as follows [18,19]:
(Y1) The product rule for the power-law derivative [15]:
"6, (1) T, (0]=T1,() "D’ ©,(1)+ 0,0 "D I, (1) ©)

(Y2) The chain rule for the power-law derivative:

"p0 e, =w"®,) "DV e, (10)
where W (@®,) = dw(®,)/dO,, exists.

The power-law partial derivatives, power-law gradients
and directional power-law derivative

Let us consider the power-law co-ordinate system, given as ix™ + jy?* +kz™ =
= [xD v yD2 ,zDs ], where D, D, and D; are the fractal dimensions, and i, j, and k are the unit
vector in the Cartesian co-ordinate system.

Let us consider the function, defined by v, = W;D‘ DD (x y, 2y = (xP, P2, 2.

The power-law partial derivatives of the function v, =, (x, y, z) are defined:

1-Dy 1-D, 1-Ds
"oy, = (x QJ Voo 0w, = [—y EJ Ve "0y, = [Z %}//w , (1ab.c)

D, ox D, oy D,

where V= V/((()D,D’D) (xyyaz) = l//(xDayDaZD

The total power-law differential of the function v, =y, (x, y,z) is defined:
dy, =[O 00y, Jdx +[ Dy o0y, Jdy +[ Dz o0y, 1dz (12)

Thus, the power-law derivative with respect to the time ¢ is given:

dy, Dy-1 PL A(1) dx D, -1 PL A(l) dy D,-1 PL A(1) dz
T—[Dlx ax l//w:|5+|:D2X 2 6y l//a]:|5+|:D3x 3 82 V/W:IE (13)

The power-law gradient of first type in the Cartesian co-ordinate system is defined:
V(DI’DZ’DB) — l-(Dlxlel)PL agcl) + j(Dzyszl)PLagjl) + k(D3ZD3_1)PL69) (14)
which deduces that the power-law gradient of second type in the Cartesian co-ordinate system:

VP =i(Dx" ™0 + j(DyP )6 + k(D)0 (15)



Yang, X.-J.: The Vector Power-Law Calculus with Applications in Power-Law Fluid Flow
4292 THERMAL SCIENCE: Year 2020, Vol. 24, No. 6B, pp. 4289-4302

The power-law gradient of first type of the scalar field v, =y, (x, y,z) reads:
VP2, < i(DP YV, + (DY OV, + k(D32 T 0y, (16)
Similarly, the power-law gradient of second type of the scalar field ¥ can be written:
V Oy =i(Dx"™) " 0Py + j(DyP ™) oy + k(D" oMy (17)
From eqs. (16) and (17) we have that:
dy, =VPL2Py odp =V PPy, apdr and dy = VPyedr = VPyendr, (18a,b)

with dr = ndr =idx + jdy + kdz, where n is the unit normal, and dr is a distance measured along
the normal n.
The directional power-law derivative of the function v, =y, (x,y,z), denoted by

VL2Py, s defined:
dy, — V(Dl’Dz,Dﬁl// =00 ,DZaDs)l// (19)
d}" [0 n [0
which leads to:
e (20)

where dy,/dr and dy/dr are the rates of changes of y, and y along the normal n,
respectively.

The power-law Laplace-like operator of first type, denoted as V2"
= V@202 of the scalar field ., is defined:

Dy.Ds) o7 (D150, Ds)

2 2 2
VR Ry, =[O A Ty, + [0 DA Ty, + (DD [y, 21)

In a similar way, the power-law Laplace-like operator of second type, denoted as
VD) —y @)y of the scalar field y is defined:

_ 2 _ 2 . 2
V(zD),// _ |:(DxD 1)PL6§1)] v+ |:(DyD 1)PLa(y1)] v+ |:(DZD l)PLa(Zl):| v (22)
The properties for the power-law gradient of first type read:
|:V(D1 -D2.D5) ov7 (D10, D5) :I

w, = VD220, (23)

v (D1:D2.D3) (v,0,)= l//wv(Dl’Dz’D3)®a, + @wv(DuDz,D;)Ww (24)
v/(Pr.D2.D5) ,(@wv(DpDz’Ds)V/w) — @wv(2D1’2D2’2D3)l//w + V(DI’DZ’D3)!//w .V(DlsDsts)(aw (25)

where y, and ©,, are the scalar fields.
The properties for the power-law gradient of second type can be given:

[v@ -v“’)]y/ =V VO @)=y e +0, vy (26a,b)

v(P) -(@v(D)y/) - vy + vP)ywPg 27)

where i and © are the scalar fields.
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Theory of the vector power-law calculus
The element of the vector line ¢ =7, (x,y,z) = o(x™, y"- ,z73) is given:

dl =md( = i(Dx” Y dx + j(D,y”> ) dy + k(Dyz” ) dz (28)
and

2

40 = [l = (D) (dx)? + (Dyy™ ') (dy)” + (D32 ') (d2) (29)

where m is the vector with |m|=1.
The arc length ¢ = j(f d¢ from t=a to t=b is given:

= i \/(DlxDll y (%T +(Dy? Y (%)2 (D> (%T dr (30)

The line power-law integral of the vector field

The line power-law integral of the vector field T =7, (x,y,z) along the curve
L(x,y,z) = L(x”, y?2 2™, denoted by B, is defined:

B = j T,(x,y,z)dl (31)
L(x,y,2)

where T =T, (x,y,z) = T(xD1 ,yD2 ,ZD3) =Ti+ Tyj + Tk, and the element of the vector line is:

dl = i(Dx" Y dx + j(D,y” ) dy + k(Dyz” ) dz =idl(x) + jAS (v) + kdE(z)  (32)
With use of eq. (61), we get:

Tedl = j T, (x,y,z)dl = j 7.9 4 (33)
L(x,y,2) L(x,y,z) L(1)
where dl/dt = i(Dx” ") dx/dt + j(D,y™ ") dy/dt + k(Dyz™ " )dz/dt.
Therefore, by using eqs. (32), (31) can be presented as follows:
[ Tedi= [ T.(Dx")dx+T,(D,y™ )dy+ T(Dz" ) dz (34)
L(x,y,z) L(x,y,z)
The vector field T =T, (x,y,z) in L(x,y,z) = L(x™,y",z") is said to be conserva-
tive if:
T.dl=0 (35)
L(x,y,2)
The double power-law integral of the scalar field

The double power-law integral of the scalar field @, (x, y) = ©(x™, ") on the region
S(x,y)=S(x™,y"), denoted by A(®), is defined:

4©)= [[ ©,(xy)ds (36)
S(x.y)

where dS = (D,x™ " )(D,y?> ") dx dy.
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When /(x) = x” and £ (y) = ">, we have:

dS =(Dx" YD, ™ drdy = dl(x)dS (1) 37)
It is shown from egs. (36) and (37) that:

d|l b
| {f @w(x,nylxDl“)dx}(DzyDz“)dy

S(x,y) ¢

bl d
=] [ [0, )0,y )dy}(DlxDl‘de (38)

apLc

where x €[a,b] and y €[c,d].

The volume power-law integral of the scalar field

The volume power-law integral of the scalar field @, (x, y,z) = O(x", y™,z") is
defined:
7©)=[[[ ©,(xy2dV (39)
Q(x,y,2)
with

4V = (D Y(D,y” N(Dyz” T dredy dz = dU(x) dS () dE(2)
where ((x)=x™, £(y)=y™, and &(z)=z".
Thus, we have:

Il ©utxy.2)ar = .T(D3ZD3_1)dZT (DzyDrl)dyjb.G)a)(X,y,z)(DlxD‘ dx

Q(x,y,z) a c

O C—)

b B
(D™ dx[ (D32 dz [, (x, 3, 2)(Dy ™) dy

Il
—

b B
(D Ny [ (D" dx [0, (x,2,2)(Dsz” Ndz (40)

a

where x €[a,b], y €[c,d], and z €[, B].

The surface power-law integral of the vector field

The surface power-law integral of the vector field v, (x,y,z) =w(x™,y™,z™) is
defined:

[ voteyoras= [[ v, (xy,2)nds (41)
S(x,y.2) §(x,y,2)

where n = dS$/dS is the unit normal vector to the surface S(x, y,z) = S(x?, y™> ,zP).
Let us consider that n =dS/|dS|=dS/dS, dS =|dS|, and

ds =d¢ (»)dé(2)i +di(x)dé(z) j +di(x)dS ()
=i(D,y" ) (Dyz” ) dydz + j(DxP Y (Dyz™ ) dxdz + k(D T (Dyy™ T dxdy (42)
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where d¢(»)d&(z) = (D,y™ " )Dyz” ) dydz, di(x)dé(z) = (D) (Dyz™ ) dxdz, and
d0(x)dg () = (D™ YD,y ) dxdy.
Thus, we may have from eqgs. (41) and (42) that:

[[ voxr2ras= [[ v.d¢()dEE)+y,dix)dE() +y.dix)dS(y)  (43)
8(x,,2) S(x,y,2)
where y =y, (x,y,2) = l/l(xD1 2 2Py = ., +jy, +ky,.
The flux of the vector field w =, (x, y,z) across the surface dS, denoted by @, is
defined:

o= ¢ yds (44)
S(x,y,2)
The power-law divergence of the vector field

The power-law divergence of the vector field y is defined:

(Dy,D,,D3) _ 1 1
v w = lim —— b veas (45)
m AS, (x,y,2)
where the volume V' is divided into a large number of small subvolumes AV,, with surfaces
AS, (x,y,z), y is a continuously differentiable vector field, and d§ is an element of the surface
S(x,y,z) bounding the solid Q(x, y,z).

With use of (14), (45) can be written:
VO = (DY Oy + (DT 8V, + k(D) My, (46)

where y =y, (x,5,2) =w (x”,y”,z%) =iy, + jy, +ky..
The power-law curl of the vector field

The power-law curl of the vector field 7 is defined:

1
VOLL) T = fim T, (x,y,z)dl 47
AS,, (23,20 AS, (x,,2) u i}, N w( V,2) (47)

where T =T, (x,y,z) = T(x",y? ,z2”)=T.i +T, \J + Tk be a continuously differentiable vector
field, d/ — the element of the vector line, AS,,(x, y,z) is a small surface element perpendicular
to n, AL, (x,y,z) — the closed curve of the boundary of AS,,(x,y,z), and n are oriented in a
positive sense.

Similarly, eq. (47) can be represented:

i j k
v (210205 o (DlxDl —l)PL 653) (D2yDz—1)PL a(yl) (D3ZD3—1)PL 89) (48)
T, T, T.

where T =T,(x,y,2) =T(x"™,y”,z") =T,i+T,j+ Tk.

The Gauss-like theorem

From the definition of eq. (45), we present the Gauss-like theorem as follows.
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Let us consider that:

b wends= v, dl0)AEE) +y, AU ) +y.dl0) AL ()

S(x,y,2) S(x,y,z)
The Gauss-like theorem states that:
[[[ voP2 apdr = ¢ yends (49)
Q(x,,2) S(x,»,2)

where ¥ is a continuously differentiable vector field, dV denotes an element of volume
Q(x,y,z), n is the unit outward normal to S(x, y,z), and dS is an element of the surface area of
the surface S(x, y,z) bounding the solid Q(x, y,z).

Taking dS = ndS, we have from eq. (49) that:

[[| vy = §p yeds and [ V?pdv= §f pedS (50ab)
Q(x,y,z) S(x,»,2) Q(x,y,z) S(x,y,2)

It is illustrated that eq. (50b) is the case of eq. (50a) when D, =D, =D, = D.
From the definition of eq. (48), we present the Stokes-like theorem as follows.

The Stokes-like theorem

Let us consider that:

$ yedi= § TDE x4 T (Do )y + T(Ds2 T dz

L(x,y,z) L(x,y,z)
The Stokes-like theorem states that:
] [V(DI’DZ’D” x y/]-n ds= ¢ yedl (51)
S(x,y,2) L(x,y,z)

where y is a constant vector field, S(x, y,z) denotes an open, two sided curve surface, L(x, y,z)
represents the closed contour bounding S, and d/ denotes the element of the vector line.
Taking dS = ndS, we show from eq. (51) that:

” [V(Dl’DZ’D3) xl//]-ndS = (]5 yedl/ and ” [V(D) xy/]-ndS = <J> wedl (52ab)
S(x,y.2) L(x.,y.2) S(x,y.2) L(x.,y.2)
It is shown that eq. (52b) is the case of eq. (52a) when D, =D, = D; = D.

The Green-like theorem

The Green-like theorem states:

¢ T(Dx")dx+ T, (Dyy™ " )dy =

L(x,y)
=[] o100 T, ~[Dyy 1T, i) () (53)
S(x,y)

where S(x, ) is the domain bounded by the contour L(x, y),and T =T.i+7,j .
When D, = D, = Dy = D, we have that:

ExD71M+ Tnyfldy -D J‘J’ |:fo1 PL@ECI)Ty _nyl PLagll)]—;c]folyD—l dxdy (54)
L(x,y,z) S(x,»)



Yang, X.-J.: The Vector Power-Law Calculus with Applications in Power-Law Fluid Flow
THERMAL SCIENCE: Year 2020, Vol. 24, No. 6B, pp. 4289-4302 4297

The Green-like identities
Taking @ = OV?-2%) @, we have that:

v/(D1:D2.D3) ,[@V(Dl ,Dz,Ds)(Di| — @V2D1:2D2.2D5) @y 4 y/(P1D2.Ds) oy (P02 D3) g (55)
and
v/(P1:D2.03) .|:(DV(D1’D2’D3)®:| = @V ©@220:.2D9) g 4 vy (P1D2.Dy) gy (P02 D3) i (56)

where @ =®, (x,y,z) = D(x™, y™ ,z%) and © = 0, (x,y,z)=0(x",y™ ,z) are the scalar
fields.
With the use of eq. (49), the Green-like identity of first type can be given:

J‘J‘J‘ v (P1:D2:D5) .|:®V(2D1,2D2,2D3)(D " V(Dl,DZ,D3)®.V(D1,D2,D3)®:|dV _
Q(x,y,2)
= §p s> ds (57)
S(x,,2)
In a similar way, we have that:
J‘J‘j v/(21:D2:D5) .|:(DV(ZD1,2D2,2D3)® " V(DI,DZ,D3)(D.V(D1,D2,D3)®:|dV _
Q(x,y.2)
= §p @1 eds (58)
S(x,,2)

which reduces to the Green-like identity of second type, given:

J’J‘J‘ v/ (D1-D2,D5) .|:®V(2D1,2D2,2D3)q) _ (I)V(2D1’2D2’2D3)®Jdl/ _

Q(x.y.2)

_ # |:®8(D1’D2’D3)(D _ cI>a(D1’D2’D3)®]dS (59)
S(x,.2)
Taking D, = D, = Dy = D, we have from eqs. (57) and (59) that:
f[[ v .[@)v(””q) + v“))q)-V(D)@] = ¢ eoPwds (60)
Q(x.y.2) S(x..2)
and
f[[ v {evePo-ovePeldr= §f [edo-wo”e|ds (61)
Q(x.y.2) 5(x.y.2)

Taking D, =D, = D; = D =1, the Gauss-like, Stokes-like and Green-like theorems
and Green-like identities become the Gauss [22], Stokes [23], Green theorems and Green iden-
tities [24], respectively.

Applied to describe the power-law fluid flow

Let us consider the power-law co-ordinate system, given as (P, xP, yP2 2Py =P
+ix™ + jyP2 + k2™, where Dy, D,, D,, and D; are the fractal dimensions, and i, j, and k are
the unit vector in the Cartesian co-ordinate system.

The material power-law derivative of the power-law fluid field.

Let =, (t,x,y,2) = <1>(tD,xD1 ,yD2 ,zD ) be the power-law type fluid field.
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The total power-law differential of the power-law type scalar field is given:
d =[ D™ PP |dx +[ D,y OV [dy +
[ D27 o0 Jdz + [ D™ o |de (62)

which leads to:

dq)_ D,—1 PL A1) Ox Dy—1 PL A(1) Oy
E—[Dlx 1 ﬁx CD:IE'F[DZ)/ 2 ay CD]E"F

+ Dy PLag”cpJ% + Dy LoD (63)

The material power-law derivative

The material power-law derivative of the power-law fluid density ¢ is defined:

%f =Dyt" ' o g 4 VL2 g (64)

where v = (0x/0t,0y/0t,0z/0t) = iv, + jv, + kv, is the velocity vector.
For D, =1 the material power-law-space derivative of the power-law fluid density ¢,

reads:
DY_3,, s )
Dt ot
which, by using D, = D, = Dy = D, leads to:
D¢ _0¢ (D)
—=—+0-V 66
Dt ot ¢ (66)

For D, = D, = D; =1 the material power-law-time derivative of the power-law fluid
density, denoted as, can be given:

%f =Dyt" ' P oVg+v -V (67)

It is not difficult to show that the Stokes material derivative, proposed by Stokes in
1845 to consider the velocity [25] and further developed in 1851 [26], is one of the special cases
of egs. (64)-(67) when D, =D, =D; =D, =1, and it illustrates the relationship among the
change in Lagrangian co-ordinate X =(¢,X,Y,Z), Eulerian co-ordinate x =(z,x,y,z), and
Eulerian-like co-ordinate x = (tD o xPt yD 2 7D ) for any fluid field.
The transport theorem for the power-law fluid

From eq. (64) we have that the transport theorem for the power-law fluid, e. g.:

%”f 2dV = I_U |:D0tDofl PLagl)E PR vIC ,DZ,D3)3:| a )
Q0 Q)
which, by using eq. (5221;, leads to: t

%m 2dV = [[[ D™ o2 dV + p Ev-as (69)

Q1) Q1) S(1)
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since

IIIU-V(D"DZ’D3>EdV: q‘gSE(u-n)dsz gﬁﬁau-ds (70)
Q) NO) NO)
where S(¢) is the surface of €(¢), n is the unit normal to the surface, v is the velocity vector,
and E=Z_(t,x,y,z) = 2™ ,x™, y2,z™) is the power-law fluid.
Here, the Reynolds transport theorem, proposed by in 1903 Reynolds [27], is the spe-
cial case of egs. (68) and (69) when D, =D, =D; =D, =1.
Let us define the mass of the power-law fluid is defined:

Jl3dr=5 (71

Q(t)
where 3 =3, (t,x,v,2) = 3(¢°,x",y"2,z%)and $ = 9, (t,x,y,2) = H(”, x™, yP2,2>).
The conservation of the mass of the power-law fluid is given:

Dt oV +0 - VPP 520 and Dyt N3+ VPP (o) =0 (72a,b)

since v is the velocity vector (a constant vector), and there is from egs. (68) and (71):

D tepnr, Dy—1 PL A(1) ~ (Dy,D3,D5) ~ _
— || 3dV = Dyt™° 0,’J+v- Vi ady =0 (73
i -{las "ars a e >
Here, the conservation of the mass of the fluid without power-law, proposed by Euler
in 1757 [28], is the special case of egs. (72b) and (73), and proposed by Lagrange in 1781 [29],
is the special case of eq. (72b), where D, =D, = D; =D, =1.
Let us consider the velocity gradient tensor for the power-law fluid, defined:

V(D"DZ’D3)-U=%(g+r)+%(g—r)=h+%(g—r) and ¢=VPP2P) =0 (74a,b)

where the strain tensor for the power-law fluid is defined as & = (¢ + 7)/2 with velocity gradient
c= V(D15D25D3) .vandr=0- v (Di-D2.D03)
The stress tensor for the power-law fluid is defined:
T=-pl+2ph (75)

where £ are the shear moduli of viscosity, and 7 is the unit tensor.

It is noted that the strain tensor is the special case, proposed by Cauchy in [30, 31],
and the Stokes decompose term [25] is the special case of eq. (74), the stress tensor, proposed
by Stokes in 1845 [25], is the special case of eq. (75) where D, =D, =D; =D, =1.

The conservation of the momentums for the power-law fluid

The conservation of the linear and angular momentums for the power-law fluid is:

%JIIJUdeIJIde+<ﬂ>T-dS (76)

Q1) Q1) NO)
where b is the specific body force.
Thus, we have:

Dyt oV (Fu) + 0 VPP (Gp) = VPP T 4 (77)
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since
[[[[ 2ot 76" (F0) +0- VPP (F0) — b= VPP T [dY =0 (78)
Q1)
where
Eﬂjgudrf = [[[[ D™ P63 (30) +0- VPP (30) |V (79)
Dt Q1) Q1)
and
<ﬁJS T+dS = j ﬂ WACEEROMN 1% (80)

S(1) Q(t)
From eqgs. (74a), (74b) and (77) we have:

AVACEPRE N _V(DUDZsD})p + ﬂv(ZthDz’zDs)u (81)
such that

3|:D0tD0—1 PLagl)v fu- V(DI,DZ,D3)U:| _ _V(DI,DZ,D3)p +’BV(2D1,2D2,2D3)U b (82)
From eqs. (74a) and (82) we have for f=0:
3[DOtD°*1 PLaﬁl)v +u- V(D"DZ’D3)U] =-VPL2L) py ppoand V2P =0 (83a,b)

Here, the Navier-Stokes equations for the fluid, proposed by Navier in 1822 [32] and
by Stokes in 1845 [25] are the special cases of eqs. (74b) and (77), and the Euler equations for
the fluid, proposed by Euler in 1757 [28], are the special cases of egs. (83a) and (83b), where
D =D,=D;=D,=1.

Similarly, from eq. (67) we have that:

DO PPy 1p Vo (84)
Dt

Here, the Stokes formula for the fluid, proposed by Stokes in 1845 [25], is the special

case of eq. (84) for D, =D, =Dy =D, =1.

Conclusion

In the present work, we have proposed the theory of the vector power-law calculus
based on the Leibniz, Stieltjes, and Riemann tasks. The Navier-Stokes-like and Euler-like equa-
tions for the power-law fluid were presented based on the conservations of the mass and angular
momentums for the power-law fluid. The proposed results are proposed as an advanced mathe-
matical tool for decryptions for the power-law physical phenomenon.
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Nomenclature

b — specific body force, [Nm™] Greek symbol
t — time, [s]

; v — velocity vector, [ms™!
X, v,z — co-ordinates, [m] Y [ ]
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