THERMAL SCIENCE
International Scientific Journal
THE VECTOR CALCULUS WITH RESPECT TO MONOTONE FUNCTIONS APPLIED TO HEAT CONDUCTION PROBLEMS
ABSTRACT
This paper addresses the theory of the vector calculus with respect to monotone functions for the first time. The Green-like theorem, Stokes-like theorem, Gauss-like theorem, and Green-like identities are obtained with the aid of the notation of Gibbs. The results are used to model the heat-conduction problems arising in the complex phenomenon.
KEYWORDS
PAPER SUBMITTED: 2019-08-18
PAPER REVISED: 2020-01-20
PAPER ACCEPTED: 2020-01-25
PUBLISHED ONLINE: 2020-11-27
THERMAL SCIENCE YEAR
2020, VOLUME
24, ISSUE
Issue 6, PAGES [3949 - 3959]
- Marsden, J. E., Tromba, A., Vector Calculus, Macmillan, London, UK, 2003
- Maxwell, J. C., A treatise on electricity and magnetism, Clarendon Press, Oxford, UK, 1873
- Eddington, A. S., The Mathematical Theory of Relativity, The Cambridge University Press, Cambridge, UK, 1923
- Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, The Cambridge University Press, Cambridge, UK, 1906
- Carslaw, H. S., Introduction to the Mathematical Theory of the Conduction of Heat in Solids, Dover Publication, Mineola, N. Y., USA, 1906
- Gibbs, J. W., Elements of Vector Analysis, New Haven, Nashville, Tenn., USA, 1881
- Gibbs, J. W. The Scientific Papers of J. Willard Gibbs, Longmans, Green and Company, London, UK, 1906
- Heaviside, O., Electromagnetic Theory. The Cambridge University Press, Cambridge, UK, 1893 (Reprinted by Cosimo in 2008)
- Gauss C. F., Theoria Attractionis Corporum Sphaeroidicorum Ellipticorum Homogeneorum Methodo Novo Tractata, Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores, 2 (1813), pp. 2-5
- Green, G., An Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism, Notingham, London, UK, 1828
- Katz, V. J., The History of Stokes' Theorem, Mathematics Magazine, 52 (1979), 3, pp. 146-156
- Ostrogradsky, M. V., Note sur la théorie de la chaleur, Mémoires présentés à l'Académie impériale des Sciences de St. Petersbourg, 6 (1831), 1, pp. 123-138 (Presented in 1828)
- Ostrogradsky, M. V., Mémoire sur l'equilibre et le mouvement des corps elastiques, Mémoires présentés à l'Académie impériale des Sciences de St. Petersbourg, 6 (1831), 1, pp. 39-53 (Presented in 1828)
- Stokes, G. G., A Smith's Prize Paper, The Cambridge University Press, Cambridge, UK, 1854
- Hankel, H. Zur allgemeinen Theorie der Bewegung der Flussigkeiten, Dieterische University, Buchdruckerei, 1861
- Stephenson, R. J., Development of Vector Analysis from Quaternions, American Journal of Physics, 34 (1966), 3, pp. 194-201
- Gibbs, J. W., Vector Analysis: A Text-Book for the Use of Students of Mathematics and Physics, Yale University Press, New Haven, Nashville, Tenn., USA, 1901
- Taylor, A., Mann, W. R., Advanced Calculus, 2nd ed., Xerox, Norwalk, Conn., USA, 1972
- Leibniz, G. W., Memoir Using the Chain Rule, 1676
- Stieltjes, T. J., Recherches Sur les Fractions Continues, Comptes Rendus de l'Académie des Sciences Series I - Mathematics, 118 (1894), pp. 1401-1403
- Riemann, B. Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Dieterich, Göttingen, 1867
- Yang, X.-J., Theory and Applications of Special Functions for Scientists and Engineers, Springer Nature, New York, USA, 2021
- Yang, X.-J., et al., General Fractional Derivatives with Applications in Viscoelasticity, Academic Press, New York, USA, 2020
- Yang, X. J., New Non-conventional Methods for Quantitative Concepts of Anomalous Rheology, Thermal Science, 23 (2019), 6B, pp. 4117-4127
- Widder, D. V., Advanced Calculus, Prentice-Hall, New York, USA, 1947
- Richard, E., et al. Calculus of Vector Functions, Prentice-Hall, Upper Saddle River, N. Y., USA, 1968
- Stolze, C. H., A History of the Divergence Theorem, Historia Mathematica, 5 (1978), 4, pp. 437-442
- Fourier, J. B. J., Theorie Analytic da la Chaleur, Paris, 1822 (Translated 1878)
- Laplace, P. S., Théorie des Attractions des Sphéroïdes et de la Figure des Planètes, Mémoires de l'Académie Royale des Sciences, (1782), pp. 113-196
- Poisson, S. D. Mémoire sur l'équilibre et le Mouvement des Corps élastiques, Didot, Paris, France, 1813