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This paper addresses the theory of the vector calculus with respect to monotone
functions for the first time. The Green-like theorem, Stokes-like theorem, Gauss-
-like theorem, and Green-like identities are obtained with the aid of the notation of
Gibbs. The results are used to model the heat-conduction problems arising in the
complex phenomenon.
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Introduction

The classcial vector calculus [1] is the mathematical quantities of mathematical physics
in 3-D space. A great many of the topics in the mathematical physics can be described with the
aid of the techniques of vector calculus. There are many topics containing the electricity and
magnetism [2], relativity [3], elasticity [4] and conduction of the heat in the solids [5], which can
be considered as the description of vector and scalar quantities in the time-space domain.

Let us recall some important and fundamental mathematical ideas in vector analysis.
Based on the notations of Gibbs [6, 7] and Heaviside [8], the Gauss’s theorem which was pro-
posed by Gauss in 1813 [9]. The Green’s theorem was structured by Green in 1828 [10]. The
Ostrogradski’s theorem was proposed by Ostrogradski in 1827 and published in 1831 (see [11-
13]). The Stokes’s theorem was set up by Stokes in 1854 [14], and proved by Hankel in 1861 [15].

The relationships among the Gauss’s theorem, Green’s theorem, Ostrogradski’s the-
orem, and Stokes’s theorem were discussed in [11, 16, 17]. The calculus with respect to mono-
tone function, as one of the general calculi, which includes the derivative with respect to mono-
tone function (so-called Leibniz derivative), proposed by Leibniz in 1676 [18], and the integral
with respect to monotone function (so-called Riemann-Stieltjes integral), proposed by Stieltjes
in 1894 [19], based on the Riemann’s work [20], was discussed in [21-23].

The difficulty arises from the fact that the statement of the classcial vector calculus is
not used to explain the heat-conduction problems arising in the complex phenomenon based on
the vector analysis related to the calculus with respect to monotone function. The main target of
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the paper is to propose theory of the vector calculus with respect to monotone functions and to
present the potential applications in heat-conduction problems.
The calculus with respect to monotone function

Let 7, () = (y cu)(t) = wlu(t)], where u () >0, and let N be the set of the in-
teger numbers.
The Leibniz derivative

The Leibniz derivative of the function y,, (¢) is defined [19, 22]:

1 dy, (@
O] _ u

The total differential with respect to monotone function u(¢) of the function y,, (¢),
denoted as di, (¢) = d[(y o u)(¢)] = dw[u(?)], can be given:

dy, (0 =[u® D), () |dr @)
Let ¢, (¢) = (@ ou)(t) = p[u(t)], where u'" (£)>0.

The Riemann-Stieltjes integral
The Riemann-Stieltjes integral of the function y,, (¢) is defined [19, 22]:

b
IO, = [y, OuP @) dr (3)

Here, egs. (1) and (3) are called the calculus with respect to monotone function [22-24].
The properties of the calculus with respect to monotone function read as follows [22]:
(A1) The chain rule for the Leibniz derivative [22]:

Dl ywielu(]y = w" (9)- Dl e() “
where w" () = dw(¢)/dg exists.
(A2) The first fundamental theorem of the Riemann-Stieltjes integral:

(D)= p(a) = I, [ D) | 5)
(A3) The change-of-variable theorem for the Riemann-Stieltjes integral:

t
[wP (@) D) p(u® (t)dt = w{p[u(t)]} - w{plu(a)]} (6)
Remark: the eq. (5) was discovered in [24, 25] and further reviewed in [22].

The partial derivatives with respect to monotone functions

Let gV(x)>0, V() >0, and u(z) > 0.
The partial derivatives with respect to monotone functions g(x), 4(y), and u(z) of
O =D(x,y,z) =¢d[g(x),h(y),u(z)] are defined:
PSSP . TP B S
o g%mea T Py e T W@ e

respectively.
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The total differential with respect to monotone functions g(x), A(y), and u(z) of the
scalar field @ = ®[g(x),A(y),u(z)] is defined:

d =[ g ()00, @ |dv+| AV (100, [dy + | u® ()00, ® | dz (®)
Taking O(¢) = D[x(¢), y(¢),z(¢)], we have that:

AP 000D o1 L T4 (00D @ 1Y LT, (160 o 192

o —Le" a0 mae | [uC@ale] - ©)

The gradient with respect to monotone functions

The gradient with respect to monotone functions in a Cartesian co-ordinate system is
defined:

Vien =ig" @)Y, + jh (10, + ku ()07 (10)
Thus, the gradient with respect to monotone functions of a scalar field ® = ®(x, y, z)

in a Cartesian co-ordinate system, denoted by V, , ,,®@, is given:
Vienn®=igV ()00, @ + jh" (1)), ® + kuV (2)0), @ (11)

z,u

With the aid of egs. (8) and (11), it is not difficult to show that:
d> =[ g (18, ® [dx+ [ AV ()80, |dy +[ 4" ()8, @ |dzV =V, @endr  (12)

where n is the unit normal to the surface, » — the distance measured along the normal, dr — the
distance measured along the normal, and dr = ndr =idx + jdy + kdz.

Asthespecial casethatV , , @ andnareparalleland|n|=1,wehaved® =|V , , ,®@|dr
such that [V, , u)CD| dd/dr, Wthh is the rate of change of @ along the normal, and the direc-
tion derivative is defined as V,, ;, , @+n =d®/dr = &M,

The Laplace-like operator denoted as A, ; ), of the scalar field @ is defined:

Agn®=] 2" (x)a;{;] ®+[ 1 y)a(yl}h] ®+[u” (2)6%] @ (13)
The properties for the gradient with respect to monotone functions read:
S v2] —
Agna® = Vighn®=VignmVigrn® (14)
v(g,h,u)(®(l)) = ®V(g,h,u) ((D) + q)v(g,h,u)(®) (15)
Ve hn OV ® ] = OA g 1@ + V(g 1@V (g 1,/ © (16)

where @ and © are the scalar fields.

Theory of the vector calculus with respect to monotone functions

In a Cartesian co-ordinate system, we consider the theory of the vector calculus with
respect to monotone functions.
The subline Riemnann-Stieltjes-type integral

The subline Riemann-Stieltjes-type integral with respect to monotone functions of the
function I7[g(x),h(y),u(z)] along the subcurve L(x,y,z) = L[g(x),h(y),u(z)], denoted by N,
is defined:
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[ M (g(x),h(y),uz))dl (17)

L(x,y,z)

where I1{g(x),h(y),u(z)]=11,i+11,j +11 k, and the element of the vector line is:

dl =md/ = i[ g0 (x)a;?gﬂ dx + j[h(') ( y)agl}hf]dy + k[ D2yl z] (18)
Let us consider that for / = iglx()]+ jhly(®)]+ ku[z(?)]:
dl .m0 19w aAm 1Y W nAh 192
o il g (x)ax,ge]a + [ y)ay’hf}a + ke u (z)@zjuf]a (19)

Thus, we have from egs. (18) and (19) that:

ar=\[e"@a T @2 + [0l T @? +[u @l T @y @0)

and
car 8@l der [ AV ()AL [dy + k| 08 (2) dz
S \/ g (x)o) e]( ) +[ha>(y)a<y{>hg]2(dy)2+[u<l>(z)a§{zf]z(dz)2
So, we have that:
S ORI eI R ST o1 1 S O T Ea
E‘J[ (x)0" z] o +[h ()8 z] . [u (z)awz] - 22)

From eq. (22) there is:

2 2 2
T nam T 9 WA P W A0 (92
dl= \/[g )00, /] (dtj +[ AV (e ¢] (dtj +[u(z)00 ] (dt dr (23)

which leads to the arc length / = j(f d/ from t =a to ¢t = b, given:

E:j)‘\/[ (1)(x)a(1) 4 (j’;j +[h(1)(y)6(1> 4 (‘;J’) [u(l)(z)agtf}z (%)2 o oo

As a special case of eq. (24), we have that:

g_b PUIRYY 1 ()3 dy W (am T 4 2dx 5
- {500t T + [ 0o (dxj [ ()00, (EJ 5)

Making use of eq. (18), we have:

21)

[ I[gC).h(y)u()ai= | H{g[x(t)],h[y(t)],u[zm]}%dt (26)

L(x,y,z) L(¢)
since

I [g(x),h(y).u(z)]-dl = IT {g[x(f)],h[y(f)],u[Z(t)]}'g—i 27
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The vector field I7[g(x),h(y),u(z)] in L(x,y,z)=L[g(x),h(y),u(z)] is said to be
conservative if:

¢ M[g(),h(y),u(z)]dl =0 (28)
L(x.y.z)
Thus, eq. (17) can be given:
[ mar= | 1, [ g (x)ag{{b,z]dx +11, [h“) ( y)a%e]dy +11, |:u(1) (z)ag{;f]dz (29)
L(x,y.2) L(x,y,2)
Riemann-Stieltjes-type double integral
with respect to monotone functions

The Riemann-Stieltjes-type double integral with respect to monotone functions of the
scalar field @[/, (x),5,(»)] on the region S(x,y)=S[{,(x),5,(»)], denoted by A(P), is
defined:

A@) = [[ ®[g(x),h(»)]dS (30)
S(x,»)
where dS =[g"" (x){, (1[A"" (»)0"),¢ 1dxdy.
When £, (x) = (¢ ° g)(x) = {[g(x)] and &} (x) = (£ » h)(¥) = {Th(»)], we have:
ds =[g® o |[ V()0 Jdrdy =de, (x)d, () (31)
It is shown from egs. (30) and (31) that:

I [t.0.6m]ds= [[ ®[¢,().6,(1)]d0, (xS, () =

S(x,y) S(x,»)

d b b (d
= { [ot, 0.k, (y)]d%(x)}dg (=] { [o[ 2,00k, ]dg, (y)}d@(x) (32)

a (¢

where x €[a,b] and y €[c,d].
Let us define the matrix by d/,(x)dg,(y)=MdX, (0)dY,($), where [, (x)=

=1 {2 X,(0),Y, (D]} and £, (y) = £, {1 X, (0).Y,(H]} and:

ol,(x) Ol (x)

oX,(0) 0Y,(9)

906,(») 95, (»)

oX,(0) 0Y,(9)

(33)

Thus, we have:

[ @[t,0.50]d0, (0400 =[] O[X,(0).7,(9)MdX, O)dT,8)  (4)
5(x,») 5(0,9)
Riemann-Stieltjes-type volume integral with respect to monotone functions

The Riemann-Stieltjes-type volume integral with respect to monotone functions of the
scalar field @[/, (x),&;,(»),$,(2)] is defined:
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v@)= [[[ ®[£,(x).5(0).E(2)]dr (35)

Q(x,,2)
where dV =[g" ()8, (11" (1)), u (2)0%), E1dx dy dz.
On putting £, (x) = ([g(x)], &, (x) =[A(»)], and &, (2) = &[u(z)], we have that:

v =[ gV @al ¢ [ A" ()¢ [[u (2080 ¢ |drdydz = dr, ()dg, (DS, () (36)

Thus, we present:

(Il ®lt.0.6me@]dr= [ o[¢,(x).6,00.&(2)]d, (), (Mg, (2) (37
Q(x,y,2) Q(x,y,2)
' Let us define: '

dl,(x)dg,(»)dg, (z) =K dX, (0)dY,(HdZ,(n) (38)
where
Ly (x) =L XX, (0),Y,(9).Z,(m]}, &, (») =, X, (0),Y,(H,Z, (]},
6.(2) =, VX, (0).Y,(9).Z,(m]}
and
0ly(x)  0Ol,(x) 0l,(x)
oX,(0) 0Y,($ 0IZ,(m)
K = 0g,(») 05,(») 04,(») (39)
oX,(0) 0oY,($ IZ,(m)
96,(z) 96,(z) 0¢,(2)
oX,(0) 0Y,($) 0IZ,(m)
Thus, we have for
O(x,y,z) =Pl (x),5,(¥),6,(2)] and D(0,3,m7)=D[X,(0),Y,(9),Z,(n)]
that:

([ @C.y.2)d0,(0dg, Mg ()= [[] ®(6.9,mK X, (0)dY,(HAZ,(n) (40)

Q(x,,2) 9(0,9,7])
Let us reconsider that:
(I xdg)ed& =dl, (x)dS,()dE,(2) (41)
where
dl =idl,(x), dg=jdg,(y), d§=kdS,(2) (42a,b,c)

Here, (64) is the generalized case in [26].

Riemann-Stieltjes-type surface integral with respect to monotone functions

The Riemann-Stieltjes-type surface integral with respect to monotone functions of the
vector field y{l, (x),&,(»),$,(2)] is defined:
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[[ v[t.0.6.00.8@as= [[ w[l,(0.5,(0).,(2) ndS (43)

8(x,3,2) 8(x,3,7)
where n =dS$/dS is the unit normal vector to the surface S(x, y,z) = S[Z, (x),£, (»),S,(2)].
Let us consider that n =dS/|dS|=dS/dS, dS =dS]|, and:
dS =dg;, (»)dl, (2)i +dl,(x)dS,(2)) +dl , (x)dg;, (»)k (44)
Thus, we may have from egs. (43) and (44) that:
[[ weas= [ v.d0,(»dS, (D) +y, df, (A, () +y. A, (DA, () (49)
S(x,7,2) S(x,0,2)

where y =y[/,(x),,().S, (D] =1y, + jy, +ky,.
The flux of the vector field y[/, (x),£), (), S, (2)] across the surface dS, denoted by @,
is defined:

@ = gﬁ vedS (46)
§(x,y.2)
The divergence with respect to monotone functions
The divergence with respect to monotone functions of the vector field y is defined:

. 1
Vienn ¥ = lim —— {p yeds (47)
m AS,, (x,,2)
where the volume V is divided into a large number of small subvolumes AV,, with surfaces
AS, (x,y,z), ¥ — the continuously differentiable vector field, and dS — the element of the sur-
face S(x, y,z) bounding the solid Q(x, y, z).
With use of egs. (10) and (47) can be written:

V(g,h,u) .'// = g(]) ('x) afrl,?gl//x + jh(]) (y)aﬁ;l,)h!//y + ku(l) (Z)ai],)ul//z (48)
where y =y[/,(x),,().S, (D] =iy, + jy, +ky,.
Gauss-like theorem
The Gauss-like theorem states that:
I Vsowdr= b wends (49)
Q(x,y,2) S(x,»,2)

where ¥ is a continuously differentiable vector field, dV — the element of volume Q(x,y,z),
n — the unit outward normal to S(x, y,z), and dS — an element of the surface area of the surface
S(x,y,z) bounding the solid Q(x, y,z).

Taking dS = ndS, we have from eq. (49) that:

(I Vrowdv= ¢ s (50)
Q(x,y,2) S(x,y,2)
The curl with respect to monotone functions

The curl respect to monotone functions of the vector field /7 is defined:
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\% x IT = im —— IT(g(x),h(y),u(z))dl 51

T = lim o § T (@) (51)

AL, (x,y,2)
where IT be a continuously differentiable vector field, d/ — the element of the vector line,
AS, (x,y,z) — the small surface element perpendicular to n, AL, (x, y,z) — the closed curve of
the boundary of AS,, (x, y,z), and n are oriented in a positive sense.

Similarly, eq. (51) can be expressed:

i j k
Vignw xIT =| g3, 118, u(2)dl) (52)
I, I, I,

where IT = IT[( ,(x),£, (7)., (2)] = il1, + jT1, +kT1 .

Stokes-like theorern
The Stokes-like theorem states that:
[[ [Vipoxw]nds= ¢ weal (53)
$(x,y.2) L(x,y,2)
where ¥ is a constant vector field, S(x, y,z) denotes an open, two sided curve surface, L(x, y,z)

represents the closed contour bounding S, and d/ denotes the element of the vector line.
Taking dS = ndS, we show from eq. (53) that:

I [Vienwxwlnds= ¢yt (54)

S(x,y,2) L(x,y,z)

Green-like theorem

The Green-like theorem states:

¢ year= [ [g”(x)a0,0-h" (y)a}),P]ds (55)
L(x,y) S(x,)
or

¢ Pdr,(0+0dS,0)= [[ [V 0800 -h"(1)aPldl,(x)dS, () (56)

L(x,y) S(x,y)

where IT =iP+ jQ, dl =idl, (x)+ jdg,(y), dS=d/,(x)dS,(y), and S(x,y) is a domain
bounded by a contour L(x,y).

Green-like identities
Taking ® = 0OV, , P such that:

Ve OV (610 ® ] = O 1y @+ V(g 1in PV (g 1,10 © (57)

and
Ve L PV (g10@ | = PA 1)@+ V @V /O (58)

where @ and ® are the scalar fields.
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Making the use of eq. (49), the Green-like identity of first type can be written:
— (g:h,u)
j j j Ve L @D e ® +V (g 1y @V (g 1,0 © |V = 3&}3 03" Pds (59)

Q(x,y,2) S(x,y.2)
In a similar way, we present:
— (g:h.u)
I Veenn ] ®Asn®+ Vg ®Ven®]dV = §p @aF"eds  (60)
Q(x,y,2) §(x,y,2)
which reduces to the Green-like identity of second type, given:
_ (g,h,u) (g,hu)
(I Vienin ] O i@ =Py ,,0]dV = §p |05 D - o0 lndS (61)
Q(x,y,2) §(x,y.2)

Taking g(x)=x, h(y)=y, and h(z) = z, the Gauss-like, Stokes-like and Green-like
theorems and Green-like identities become the Gauss [9], Stokes [14], Green [10] theorems
[27] and Green identities [10], respectively.

A new heat-conduction model

Let us consider the Fourier-like law for the heat fluid density, denoted as ¢, expressed by:
g=-0V T =@ [igm 00T + jh® (1), T + ku® (z)aQ]uT] (62)

where @ is the thermal conductivity, T’ = T[g(x),h(y),u(z),t] and ¢ = q[g(x),h(y),u(z),t].
The heat entering through S(x,y,z) at unit time, denoted by E,, is written as
follows:

E,= cjg% q+dS (63)
The energy generation in the domain Q(x, y,z), denoted by E,, reads as follows:

[[] car (64)

Q(x,y,2)
where G = G[g(x),h(y),u(z),t] is the energy generation at unit time and unit volume.
The changes in storage energy in the domain Q(x, y,z), denoted by E,, can be given:

=[] hp—dV (65)

Q(x,,2)
where 7 is the density and g is the specific heat of the complex material.
The First law of thermodynamics at unit time states that:

E, -E,=E; (66)
which can be rewritten:

‘SfJS g~dS + m GdV = m he —dV (66)
S(x,7,2) Q(x,,2) Q(x,y,2)

Making use of the Gauss-like theorem, we have from eq. (62) that:

b qds=-a [[[ Vi 4.V (67)

$(x,,2) Q(x,y,2)
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Substituting eq. (67) into eq. (66), we have:

2 or
) [W(g’h,u)-T+G—h |V =0 (68)
Q(x.y,2)
Thus, we have from eq. (68):
oT
@V gy T +G =1 o (69)
which leads to:
or
@V g puy T +G =1 o (70)
Considering that G = 0, we have the transient heat-condition equation:
oT
2
W(g,h,u)'T:hKOE (71)
Similarly, taking 07'/0t = 0, we have the Laplace-like equation, e. g.:
Vel =0 (72)
or
2 2 2
o[ g @, | T+[ iV, | T+[u" (220, ] T=0 (73)
From eq. (71) the transient heat-condition equation in the 2-D space reads:
O e T Oa® Prenoll
o[ gV, | T+ (el | T=np > (74)
The transient heat-condition equation in the 1-D space can be written:
O (o0 Prenol
w[g (x)@x’gJ T=hgp o (75)
From eq. (69) we obtain the Poisson-like equation, e. g.:
@V (g T ==G (76)

On putting g(x) =x, h(y) =y, and h(z) = z, the Fourier-like law, Laplace-like equa-
tion and Poisson-like equation are the Fourier law [28], Laplace equation [29] and Poisson
equation [30], respectively.

Conclusion

In the work, we proposed the theory of the vector calculus with respect to monotone
functions. The Green-like theorem, Stokes-like theorem, Gauss-like theorem and Green-like
identities were presented in detail. We proposed the Fourier-like law, Laplace-like equation and
Poisson-like equation based on the heat-conduction models arising in the complex phenomenon.
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Nomenclature
T — temperature, [K] Greek symbols
! - time, [s] (o] — heat conductivity, [Wm K]
X, X,z — space co-ordinates, [m] 7 — density, [kgm™?]

%) — specific heat capacity, [Jkg 'K ']
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