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This paper addresses the theory of the vector calculus with respect to monotone 
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Gibbs. The results are used to model the heat-conduction problems arising in the 
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Introduction

The classcial vector calculus [1] is the mathematical quantities of mathematical physics 
in 3-D space. A great many of the topics in the mathematical physics can be described with the 
aid of the techniques of vector calculus. There are many topics containing the electricity and 
magnetism [2], relativity [3], elasticity [4] and conduction of the heat in the solids [5], which can 
be considered as the description of vector and scalar quantities in the time-space domain. 

Let us recall some important and fundamental mathematical ideas in vector analysis. 
Based on the notations of Gibbs [6, 7] and Heaviside [8], the Gauss’s theorem which was pro-
posed by Gauss in 1813 [9]. The Green’s theorem was structured by Green in 1828 [10]. The 
Ostrogradski’s theorem was proposed by Ostrogradski in 1827 and published in 1831 (see [11-
13]). The Stokes’s theorem was set up by Stokes in 1854 [14], and proved by Hankel in 1861 [15]. 

The relationships among the Gauss’s theorem, Green’s theorem, Ostrogradski’s the-
orem, and Stokes’s theorem were discussed in [11, 16, 17]. The calculus with respect to mono-
tone function, as one of the general calculi, which includes the derivative with respect to mono-
tone function (so-called Leibniz derivative), proposed by Leibniz in 1676 [18], and the integral 
with respect to monotone function (so-called Riemann-Stieltjes integral), proposed by Stieltjes 
in 1894 [19], based on the Riemann’s work [20], was discussed in [21-23]. 

The difficulty arises from the fact that the statement of the classcial vector calculus is 
not used to explain the heat-conduction problems arising in the complex phenomenon based on 
the vector analysis related to the calculus with respect to monotone function. The main target of 
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the paper is to propose theory of the vector calculus with respect to monotone functions and to 
present the potential applications in heat-conduction problems.

The calculus with respect to monotone function

Let ( ) ( )( ) [ ( )]u t u t u tψ ψ ψ= = , where (1) ( ) 0u t > , and let   be the set of the in-
teger numbers. 

The Leibniz derivative

The Leibniz derivative of the function ( )u tψ  is defined [19, 22]:

	 (1)
, ( ) (1)

d ( )1( )
d( )
u

ut u
tD t

tu t
ψ

ψ⋅ = 	 (1)

The total differential with respect to monotone function ( )u t  of the function ( )u tψ , 
denoted as d ( ) d[( )( )] d [ ( )]u t u t u tψ ψ ψ= = , can be given:

	 (1) (1)
, ( )d ( ) ( ) ( ) du ut ut u t D t tψ ψ⋅ =   	 (2)

Let ( ) ( )( ) [ ( )]u t u t u tϕ ϕ ϕ= = , where (1) ( ) 0u t > .

The Riemann-Stieltjes integral 

The Riemann-Stieltjes integral of the function ( )u tψ  is defined [19, 22]:

	 (1) (1)
, ( ) ( ) ( ) ( )d

b

a u ub u
a

I t t u t tψ ψ⋅ = ∫ 	 (3)

Here, eqs. (1) and (3) are called the calculus with respect to monotone function [22-24].
The properties of the calculus with respect to monotone function read as follows [22]:
(A1) The chain rule for the Leibniz derivative [22]:

	 { }(1) (1) (1)
, ( ) , ( )[ ( )] ( ) ( )t u t uD w u t w D tϕ ϕ ϕ⋅ ⋅= ⋅ 	 (4)

where (1) ( ) d ( )/dw wϕ ϕ ϕ=  exists. 
(A2) The first fundamental theorem of the Riemann-Stieltjes integral:

	 (1) (1)
, ( ) , ( )( ) ( ) ( )a t u t ut a I D tϕ ϕ ϕ⋅ ⋅ − =   	 (5)

(A3) The change-of-variable theorem for the Riemann-Stieltjes integral:

	 { } { }(1) (1) (1)
, ( )( ) ( ) ( )d [ ( )] [ ( )]

t

t u
a

w D t u t t w u t w u aϕ ϕ ϕ ϕ⋅⋅ = −∫ 	 (6)

Remark: the eq. (5) was discovered in [24, 25] and further reviewed in [22].

The partial derivatives with respect to monotone functions  

Let (1) ( ) 0g x > , (1) ( ) 0h y > , and (1) ( ) 0u z > . 
The partial derivatives with respect to monotone functions ( )g x , ( )h y , and ( )u z  of 

( , , ) [ ( ), ( ), ( )]x y z g x h y u zφΦ = Φ =  are defined:

	 (1)
, (1)

1
( )x g xg x

∂Φ
∂ Φ =

∂
,   (1)

, (1)
1
( )y h yh y

∂Φ
∂ Φ =

∂
,   (1)

, (1)
1
( )z u zu z

∂Φ
∂ Φ =

∂
	 (7a,b,c)

respectively. 
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The total differential with respect to monotone functions ( )g x , ( )h y , and ( )u z  of the 
scalar field [ ( ), ( ), ( )]g x h y u zΦ = Φ  is defined:

	 (1) (1) (1) (1) (1) (1)
, ,,d ( ) d ( ) d ( ) dx g z uy hg x x h y y u z z     Φ = ∂ Φ + ∂ Φ + ∂ Φ      	 (8)

Taking ( ) [ ( ), ( ), ( )]t x t y t z tΘ = Φ , we have that:

	 (1) (1) (1) (1) (1) (1)
, ,,

d d d d( ) ( ) ( )
d d d dx g z uy h

x y zg x h y u z
t t t t
Φ      = ∂ Φ + ∂ Φ + ∂ Φ      	 (9)

The gradient with respect to monotone functions

The gradient with respect to monotone functions in a Cartesian co-ordinate system is 
defined:

	 (1) (1) (1) (1) (1) (1)
( , , ) , ,,( ) ( ) ( )g h u x g z uy hig x jh y ku z∇ = ∂ + ∂ + ∂ 	 (10)

Thus, the gradient with respect to monotone functions of a scalar field ( , , )x y zΦ = Φ  
in a Cartesian co-ordinate system, denoted by ( , , )g h u∇ Φ, is given:

	 (1) (1) (1) (1) (1) (1)
( , , ) , ,,( ) ( ) ( )g h u x g z uy hig x jh y ku z∇ Φ = ∂ Φ + ∂ Φ + ∂ Φ 	 (11)

With the aid of eqs. (8) and (11), it is not difficult to show that:

	 (1) (1) (1) (1) (1) (1)
, , ( , , ),d ( ) d ( ) d ( ) d dx g z u g h uy hg x x h y y u z z r     Φ = ∂ Φ + ∂ Φ + ∂ Φ ∇ = ∇ Φ      n 	 (12)

where n is the unit normal to the surface, r  – the distance measured along the normal, dr – the 
distance measured along the normal, and d d d dr i x j y k z= = + +dr n .

As the special case that ( , , )g h u∇ Φ and n are parallel and | | 1=n , we have ( , , )d | |dg h u rΦ = ∇ Φ  
such that ( , , )| | d /dg h u r∇ Φ = Φ , which is the rate of change of Φ along the normal, and the direc-
tion derivative is defined as ( , , )

( , , ) d /d g h u
g h u nr∇ Φ = Φ = ∂ Φn .

The Laplace-like operator, denoted as ( , , )g h u∆ , of the scalar field Φ is defined:

	
2 2 2(1) (1) (1) (1) (1) (1)

( , , ) , ,,( ) ( ) ( )g h u x g z uy hg x h y u z     ∆ Φ = ∂ Φ + ∂ Φ + ∂ Φ      	 (13)

The properties for the gradient with respect to monotone functions read:

	 2
( , , ) ( , , ) ( , , ) ( , , )g h u g h u g h u g h u∆ Φ = ∇ Φ = ∇ ∇ Φ 	 (14)

	 ( , , ) ( , , ) ( , , )( ) ( ) ( )g h u g h u g h u∇ ΘΦ = Θ∇ Φ +Φ∇ Θ 	 (15)

	 ( , , ) ( , , ) ( , , ) ( , , ) ( , , )g h u g h u g h u g h u g h u ∇ Θ∇ Φ = Θ∆ Φ +∇ Φ ∇ Θ   	 (16)

where Φ and Θ are the scalar fields. 

Theory of the vector calculus with respect to monotone functions

In a Cartesian co-ordinate system, we consider the theory of the vector calculus with 
respect to monotone functions.

The subline Riemann-Stieltjes-type integral

The subline Riemann-Stieltjes-type integral with respect to monotone functions of the 
function [ ( ), ( ), ( )]g x h y u zΠ  along the subcurve ( , , ) [ ( ), ( ), ( )]L x y z L g x h y u z= , denoted by M, 
is defined:
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	 ( )
( , , )

( ), ( ), ( )
L x y z

g x h y u z= ∫ d lM Π 	 (17)

where [ ( ), ( ), ( )] x y zg x h y u z i j k= Π +Π +ΠΠ , and the element of the vector line is:

	 (1) (1) (1) (1) (1) (1)
, ,,d ( ) ( ) d ( ) dx g z uy hi g x dx j h y y k u z z     = = ∂ + ∂ + ∂     d    l m 	 (18)

Let us consider that for [ ( )] [ ( )] [ ( )]ig x t jh y t ku z t= + +


l :

	 (1) (1) (1) (1) (1) (1)
, ,,

d d d( ) ( ) ( )
d d d dx g z uy h

x y zi g x j h y k u z
t t t t

     = ∂ + ∂ + ∂     
d

  

l 	 (19)

Thus, we have from eqs. (18) and (19) that:

	
2 2 2(1) (1) 2 (1) (1) 2 (1) (1) 2

, ,,d ( ) (d ) ( ) (d ) ( ) (d )x g z uy hg x x h y y u z z     = ∂ + ∂ + ∂         	 (20)

and

	
( ) ( ) ( )

(1) (1) (1) (1) (1) (1)
, ,,

2 2 22 2 2(1) (1) (1) (1) (1) (1)
, ,,

( ) d ( ) d ( ) d

d ( ) d ( ) d ( ) d

x g z uy h

x g z uy h

i g x x j h y y k u z z

g x x h y y u z z

     ∂ + ∂ + ∂     = =
     ∂ + ∂ + ∂     

d   



  

lm 	 (21)

So, we have that:

	
2 2 2

2 2 2(1) (1) (1) (1) (1) (1)
, ,,

d d d d( ) ( ) ( )
d d d dx g z uy h

x y zg x h y u z
t t t t

          = ∂ + ∂ + ∂               



   	 (22)

From eq. (22) there is:

	 ( )
2 2 2

2 2 2(1) (1) (1) (1) (1) (1)
, ,,

d d d( ) ( ) d
d d dx g z uy h
x y zd g x h y u z t
t t t

          = ∂ + ∂ + ∂               
    	 (23)

which leads to the arc length 0 d= ∫


  from t a=  to t b= , given:

	
2 2 2

2 2 2(1) (1) (1) (1) (1) (1)
, ,,

d d d( ) ( ) ( ) d
d d d

b

x g z uy h
a

x y zg x h y u z t
t t t

          = ∂ + ∂ + ∂               ∫    	 (24)

As a special case of eq. (24), we have that:

	 ( )
2 2

2 2 2(1) (1) (1) (1) (1) (1)
, ,,

d d( ) ( ) d
d d

b

x g z uy h
a

y zg x h y u z x
x x

        = ∂ + ∂ + ∂           ∫    	 (25)

Making use of eq. (18), we have:

	 [ ] { }
( , , ) ( )

( ), ( ), ( ) [ ( )], [ ( )], [ ( )] d
dL x y z L t

g x h y u z g x t h y t u z t t
t

=∫ ∫
dd ll Π Π 	 (26)

since

	 [ ] { }( ), ( ), ( ) [ ( )], [ ( )], [ ( )]
d

g x h y u z g x t h y t u z t
t

=
dd Π Π ll 	 (27)
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The vector field [ ( ), ( ), ( )]g x h y u zΠ  in ( , , ) [ ( ), ( ), ( )]L x y z L g x h y u z=  is said to be 
conservative if:

	 [ ]
( , , )

( ), ( ), ( ) 0
L x y z

g x h y u z =∫ d


Π l 	 (28)

Thus, eq. (17) can be given:

	 (1) (1) (1) (1) (1) (1)
, ,,

( , , ) ( , , )

( ) d ( ) d ( ) dx x g x x z uy h
L x y z L x y z

g x x h y y u z z     = Π ∂ + Π ∂ + Π ∂     ∫ ∫d   Π l 	(29)

Riemann-Stieltjes-type double integral  
with respect to monotone functions

The Riemann-Stieltjes-type double integral with respect to monotone functions of the 
scalar field [ ( ), ( )]g hx yζΦ   on the region ( , ) [ ( ), ( )]g hS x y S x yζ=  , denoted by ( )A Φ , is 
defined:

	
( , )

( ) [ ( ), ( )]d
S x y

A g x h y SΦ = Φ∫∫ 	 (30)

where (1) (1) (1) (1)
, ,d [ ( ) ][ ( ) ]d dx g y hS g x h y x yζ= ∂ ∂ . 

When ( ) ( )( ) [ ( )]g x g x g x= =     and ( ) ( )( ) [ ( )]h x h y h yζ ζ ζ= = , we have:

	 (1) (1) (1) (1)
, ,d ( ) ( ) d d d ( ) ( )x g g hy hS g x h y x y x d yζ ζ   = ∂ ∂ =     	 (31)

It is shown from eqs. (30) and (31) that:

	 ( )

( , ) ( , )

( ), ( ) d ( ), ( ) d ( )d ( )

( ), ( ) d ( ) d ( ), ( ) d ( ) d ( )

g h g h g h
S x y S x y

d b b d

g h g h g h h g
c a a c

x y S x y x y

x k y x y x k y y x

ζ ζ ζ

ζ ζ

   Φ = Φ =   

         = Φ = Φ      
      

∫∫ ∫∫

∫ ∫ ∫ ∫

  

    	 (32)

where [ , ]x a b∈  and [ , ]y c d∈ .
Let us define the matrix by d ( )d ( ) d ( )d ( )g hx y X Yν ρζ θ ϑ= Μ , where ( )g x =

{ [ ( ), ( )]}g x X Yν ρθ ϑ=   and ( ) { [ ( ), ( )]}h hy y X Yν ρζ ζ θ ϑ=  and:

	

( ) ( )
( ) ( )
( ) ( )
( ) ( )

g g

h h

x x
X Y

y y
X Y

ν ρ

ν ρ

θ ϑ

ζ ζ
θ ϑ

∂ ∂

∂ ∂
Μ =

∂ ∂
∂ ∂

 

	 (33)

Thus, we have:

	
( , ) ( , )

( ), ( ) d ( )d ( ) ( ), ( ) d ( )d ( )g h g h
S x y S

x y x y X Y X Yν ρ ν ρ
θ ϑ

ζ ζ θ ϑ θ ϑ   Φ = Φ Μ  ∫∫ ∫∫  	 (34)

Riemann-Stieltjes-type volume integral with respect to monotone functions 

The Riemann-Stieltjes-type volume integral with respect to monotone functions of the 
scalar field [ ( ), ( ), ( )]g h ux y zζ ξΦ   is defined:
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( , , )

( ) ( ), ( ), ( ) dg h u
x y z

V x y z Vζ ξ
Ω

 Φ = Φ  ∫∫∫  	 (35)

where (1) (1) (1) (1) (1) (1)
, ,,d [ ( ) ][ ( ) ][ ( ) ]d d dx g z uy hV g x h y u z x y zζ ξ= ∂ ∂ ∂ . 

On putting ( ) [ ( )]g x g x=  , ( ) [ ( )]h x h yζ ζ= , and ( ) [ ( )]u z u zξ ξ= , we have that:

	 (1) (1) (1) (1) (1) (1)
, ,,d ( ) ( ) ( ) d d d d ( )d ( )d ( )x g z u g h uy hV g x h y u z x y z x y zζ ξ ζ ξ     = ∂ ∂ ∂ =       	 (36)

Thus, we present:

   
( , , ) ( , , )

( ), ( ), ( ) d ( ), ( ), ( ) d ( )d ( )d ( )g h u g h u g h u
x y z x y z

x y z V x y z x y zζ ξ ζ ξ ζ ξ
Ω Ω

   Φ = Φ   ∫∫∫ ∫∫∫   	 (37)

Let us define:

	 d ( )d ( )d ( ) d ( )d ( )d ( )g h ux y z X Y Zν ρ γζ ξ θ ϑ η= Κ 	 (38)

where

	 ( ) { [ ( ), ( ), ( )]}g gx x X Y Zν ρ γθ ϑ η=  , ( ) { [ ( ), ( ), ( )]}h hy y X Y Zν ρ γζ ζ θ ϑ η= ,	

	 ( ) { [ ( ), ( ), ( )]}u hz y X Y Zν ρ γξ ζ θ ϑ η= 	
and

	

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

g g g

h h h

u u u

x x x
X Y Z

y y y
X Y Z

z z z
X Y Z

ν ρ γ

ν ρ γ

ν ρ γ

θ ϑ η

ζ ζ ζ
θ ϑ η

ξ ξ ξ
θ ϑ η

∂ ∂ ∂

∂ ∂ ∂

∂ ∂ ∂
Κ =

∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

  

	 (39)

Thus, we have for

	 ( , , ) [ ( ), ( ), ( )]g h ux y z x y zζ ξΦ = Φ     and   ( , , ) [ ( ), ( ), ( )]X Y Zν ρ γθ ϑ η θ ϑ ηΦ = Φ 	

that:

	
( )( , , ) , ,

( , , )d ( )d ( )d ( ) ( , , ) d ( )d ( )d ( )g h u
x y z

x y z x y z X Y Zν ρ γ
θ ϑ η

ζ ξ θ ϑ η θ ϑ η
Ω Ω

Φ = Φ Κ∫∫∫ ∫∫∫ 	 (40)

Let us reconsider that:

	 ( ) d ( )d ( )d ( )g h ux y zζ ξ× =d d d ζ ξl 	 (41)

where 

	 d ( )gi x=d l ,   d ( )hj yζ=dζ ,   d ( )uk zξ=dξ 	 (42a,b,c)

Here, (64) is the generalized case in [26]. 

Riemann-Stieltjes-type surface integral with respect to monotone functions 

The Riemann-Stieltjes-type surface integral with respect to monotone functions of the 
vector field [ ( ), ( ), ( )]g h ux y zζ ξψ  is defined:
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( , , ) ( , , )

( ), ( ), ( ) ( ), ( ), ( ) dg h u g h u
x y z x y z

x y z x y z Sζ ξ ζ ξ   =   ∫∫ ∫∫d   ψ ψ
S S

S n 	 (43)

where /dS= dn S  is the unit normal vector to the surface ( , , ) [ ( ), ( ), ( )]g h ux y z x y zζ ξ= S S . 
Let us consider that S/| | /dS= =d d dn S S , d | |S = dS , and:

	 d ( )d ( ) d ( )d ( ) d ( )d ( )h u g u g hy z i x z j x y kζ ζ ζ= + +d   S 	 (44)

Thus, we may have from eqs. (43) and (44) that:

	
( , , ) ( , , )

d ( )d ( ) d ( )d ( ) d ( )d ( )x h u y g u z g h
x y z S x y z

y z x z x yψ ζ ψ ζ ψ ζ= + +∫∫ ∫∫d   ψ
S

S 	 (45)

where [ ( ), ( ), ( )] .g h u x y yx y z i j kζ ξ ψ ψ ψ= = + +ψ ψ  
The flux of the vector field [ ( ), ( ), ( )]g h ux y zζ ξψ  across the surface dS, denoted by Φ , 

is defined:

	
( , , )x y z

= ∫ d


Φ ψ
S

S 	 (46)

The divergence with respect to monotone functions 

The divergence with respect to monotone functions of the vector field ψ is defined:

	 ( , , ) 0
( , , )

1lim
m

m

g h u V m x y zV∆ →
∆

∇ =
∆ ∫∫ d 



ψ ψ
S

S 	 (47)

where the volume V is divided into a large number of small subvolumes mV∆  with surfaces 
( , , )m x y z∆S , ψ  – the continuously differentiable vector field, and dS  – the element of the sur-

face ( , , )x y zS  bounding the solid ( , , )x y zΩ . 
With use of eqs. (10) and (47) can be written:

	 ( ) ( ) ( )(1) (1) (1) (1) (1) (1)
( , , ) , ,,g h u x g x y z u zy hg x jh y ku zψ ψ ψ∇ = ∂ + ∂ + ∂ψ 	 (48)

where [ ( ), ( ), ( )] .g h u x y yx y z i j kζ ξ ψ ψ ψ= = + +ψ ψ

Gauss-like theorem

The Gauss-like theorem states that:

	
( )

( , , )
( , , ) , ,

d dg h u
x y z x y z

V S
Ω

∇ =∫∫∫ ∫∫ 



ψ ψ
S

n 	 (49)

where ψ is a continuously differentiable vector field, dV – the element of volume ( , , )x y zΩ ,  
n – the unit outward normal to ( , , )x y zS , and dS – an element of the surface area of the surface 

( , , )x y zS  bounding the solid ( , , )x y zΩ . 
Taking dS=dS n , we have from eq. (49) that:

	 ( , , )
( , , ) ( , , )

dg h u
x y z x y z

V
Ω

∇ =∫∫∫ ∫∫ d 



ψ ψ
S

S 	 (50)

The curl with respect to monotone functions 

The curl respect to monotone functions of the vector field Π is defined:
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	 ( )( , , ) ( , , ) 0
( , , )

1lim ( ), ( ), ( )
( , , )m

m

g h u S x y z m L x y z

g x h y u z
S x y z∆ →

∆

∇ × =
∆ ∫ dl



Π Π 	 (51)

where Π be a continuously differentiable vector field, dl – the element of the vector line, 
( , , )mS x y z∆  – the small surface element perpendicular to n, ( , , )mL x y z∆  – the closed curve of 

the boundary of ( , , )mS x y z∆ , and n are oriented in a positive sense.
Similarly, eq. (51) can be expressed:

	 (1) (1) (1) (1) (1) (1)
( , , ) , ,,( ) ( ) ( )g h u x g z uy h

x y z

i j k

g x h y u z

 
 

∇ × = ∂ ∂ ∂ 
  Π Π Π 

Π 	 (52)

where [ ( ), ( ), ( )] .g h u x y yx y z i j kζ ξ= = Π + Π + ΠΠ Π

Stokes-like theorem

The Stokes-like theorem states that:

	 ( , , )
( , , ) ( , , )

dg h u
S x y z L x y z

S ∇ × = ∫∫ ∫ d 



ψ ψn l 	 (53)

where ψ is a constant vector field, ( , , )S x y z  denotes an open, two sided curve surface, ( , , )L x y z  
represents the closed contour bounding S , and dl denotes the element of the vector line.

Taking dS=dS n , we show from eq. (53) that:

	 ( , , )
( , , ) ( , , )

dg h u
S x y z L x y z

S ∇ × = ∫∫ ∫ d 



ψ ψn l 	 (54)

Green-like theorem

The Green-like theorem states:

	 ( ) ( )(1) (1) (1) (1)
, ,

( , ) ( , )

dx g y h
L x y S x y

g x Q h y P S = ∂ − ∂ ∫ ∫∫d


ψ l 	 (55)

or

	 (1) (1) (1) (1)
, ,

( , ) ( , )

d ( ) d ( ) ( ) ( ) d ( )d ( )g h x g g hy h
L x y S x y

P x Q y g x Q h y P x yζ ζ + = ∂ − ∂ ∫ ∫∫ 



	 (56)

where iP jQ= +Π , d ( ) d ( )g hi x j yζ= +d l , d d ( )d ( )g hS x yζ=  , and ( , )S x y  is a domain 
bounded by a contour ( , )L x y .

Green-like identities

Taking ( , , )g h uΦ = Θ∇ Φ such that:

	 ( , , ) ( , , ) ( , , ) ( , , ) ( , , )g h u g h u g h u g h u g h u ∇ Θ∇ Φ = Θ∆ Φ +∇ Φ ∇ Θ   	 (57)

and

	 ( , , ) ( , , ) ( , , ) ( , , ) ( , , )g h u g h u g h u g h u g h u ∇ Φ∇ Θ = Φ∆ Θ +∇ Φ ∇ Θ   	 (58)

where Φ and Θ are the scalar fields.
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Making the use of eq. (49), the Green-like identity of first type can be written:

	 ( , , )
( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )

d dg h u
g h u g h u g h u g h u n

x y z x y z

V S
Ω

 ∇ Θ∆ Φ +∇ Φ ∇ Θ = Θ∂ Φ ∫∫∫ ∫∫ 



S

	 (59)

In a similar way, we present:

	 ( , , )
( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )

d dg h u
g h u g h u g h u g h u n

x y z x y z

V S
Ω

 ∇ Φ∆ Θ +∇ Φ ∇ Θ = Φ∂ Θ ∫∫∫ ∫∫ 



S

	 (60)

which reduces to the Green-like identity of second type, given:

	 ( , , ) ( , , )
( , , ) ( , , ) ( , , )

( , , ) ( , , )

d dg h u g h u
g h u g h u g h u n n

x y z x y z

V S
Ω

  ∇ Θ∆ Φ −Φ∆ Θ = Θ∂ Φ −Φ∂ Θ   ∫∫∫ ∫∫
S

n 



	 (61)

Taking ( )g x x= , ( )h y y= , and ( )h z z= , the Gauss-like, Stokes-like and Green-like 
theorems and Green-like identities become the Gauss [9], Stokes [14], Green [10] theorems 
[27] and Green identities [10], respectively.

A new heat-conduction model

Let us consider the Fourier-like law for the heat fluid density, denoted as q, expressed by:

	 (1) (1) (1) (1) (1) (1)
( , , ) , ,,( ) ( ) ( )g h u x g z uy hT ig x T jh y T ku z Tϖ ϖ  = − ∇ = − ∂ + ∂ + ∂ q 	 (62)

where ϖ  is the thermal conductivity, [ ( ), ( ), ( ), ]T T g x h y u z t=  and [ ( ), ( ), ( ), ]g x h y u z t=q q .
The heat entering through ( , , )x y zS  at unit time, denoted by 1Ε , is written as 

follows:

	 1
( , , )

=
x y z

Ε ∫∫ d


S

q S 	 (63)

The energy generation in the domain ( , , )x y zΩ , denoted by 2Ε , reads as follows: 

	 2
( , , )

d
x y z

G V
Ω

Ε = ∫∫∫ 	 (64)

where [ ( ), ( ), ( ), ]G G g x h y u z t=  is the energy generation at unit time and unit volume.
The changes in storage energy in the domain ( , , )x y zΩ , denoted by 3Ε , can be given:

	 3
( , , )

d
x y z

T V
tΩ

∂
Ε = ℘

∂∫∫∫  	 (65)

where  is the density and ℘ is the specific heat of the complex material.
The First law of thermodynamics at unit time states that:

	 2 1 3=Ε − Ε Ε 	 (66)
which can be rewritten:

	
( , , ) ( , , ) ( , , )

d d
x y z x y z x y z

TG V V
tΩ Ω

∂
− + = ℘

∂∫∫ ∫∫∫ ∫∫∫d 



S

q S 	 (66)

Making use of the Gauss-like theorem, we have from eq. (62) that:

	 2
( , , )

( , , ) ( , , )

dg h u
x y z x y z

T Vϖ
Ω

= − ∇∫∫ ∫∫∫d 



S

q S 	 (67)
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Substituting eq. (67) into eq. (66), we have:

	 2
( , , )

( , , )

d 0g h u
x y z

TT G V
t

ϖ
Ω

∂ ∇ + − ℘ = ∂ ∫∫∫   	 (68)

Thus, we have from eq. (68):

	 2
( , , )g h u

TT G
t

ϖ ∂
∇ + = ℘

∂
  	 (69)

which leads to:

	 2
( , , )g h u

TT G
t

ϖ ∂
∇ + = ℘

∂
  	 (70)

Considering that 0G = , we have the transient heat-condition equation:

	 2
( , , )g h u

TT
t

ϖ ∂
∇ = ℘

∂
  	 (71)

Similarly, taking / 0T t∂ ∂ = , we have the Laplace-like equation, e. g.:

	 2
( , , ) 0g h u Tϖ∇ = 	 (72)

or

	
2 2 2(1) (1) (1) (1) (1) (1)

, ,,( ) ( ) ( ) 0x g z uy hg x T h y T u z Tϖ      ∂ + ∂ + ∂ =      	 (73)

From eq. (71) the transient heat-condition equation in the 2-D space reads:

	
2 2(1) (1) (1) (1)

, ,( ) ( )x g y h
Tg x T h y T
t

ϖ ∂   ∂ + ∂ = ℘    ∂
 	 (74)

The transient heat-condition equation in the 1-D space can be written:

	 ( )
2(1) (1)

,x g
Tg x T
t

ϖ ∂ ∂ = ℘  ∂
 	 (75)

From eq. (69) we obtain the Poisson-like equation, e. g.:

	 2
( , , )g h u T Gϖ∇ = − 	 (76)

On putting ( )g x x= , ( )h y y= , and ( )h z z= , the Fourier-like law, Laplace-like equa-
tion and Poisson-like equation are the Fourier law [28], Laplace equation [29] and Poisson 
equation [30], respectively.

Conclusion

In the work, we proposed the theory of the vector calculus with respect to monotone 
functions. The Green-like theorem, Stokes-like theorem, Gauss-like theorem and Green-like 
identities were presented in detail. We proposed the Fourier-like law, Laplace-like equation and 
Poisson-like equation based on the heat-conduction models arising in the complex phenomenon.
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Nomenclature
T	 –	 temperature, [K]
t	 –	 time, [s]
x, x, z	 –	 space co-ordinates, [m]

Greek symbols

ϖ	 –	 heat conductivity, [Wm–1K–1]
ℏ	 –	 density, [kgm–3]
℘	 –	 specific heat capacity, [Jkg–1K–1]
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