THERMAL SCIENCE
International Scientific Journal
ON TRAVELING-WAVE SOLUTIONS FOR THE SCALING-LAW TELEGRAPH EQUATIONS
ABSTRACT
The aim of the study is to address the scaling-law telegraph equations with the Mandelbrot-scaling-law derivative. The traveling-wave solutions with use of the Kohlrausch-Williams-Watts function are considered in detail. The works are proposed to describe the physical models in complex topology.
KEYWORDS
PAPER SUBMITTED: 2020-05-01
PAPER REVISED: 2020-05-20
PAPER ACCEPTED: 2020-05-27
PUBLISHED ONLINE: 2020-11-27
THERMAL SCIENCE YEAR
2020, VOLUME
24, ISSUE
Issue 6, PAGES [3861 - 3868]
- Heaviside, O., On the Extra Current, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2 (1876), 9, pp. 135-145
- Schwarz, R. J., Friedland, B. Linear Systems, McGraw-Hill, New York. USA, 1965
- Cascaval, R. C., et al., Fractional Telegraph Equations, Journal of Mathematical Analysis and Applications, 276 (2002), 1, pp. 145-159
- Orsingher, E., Beghin, L., Time-Fractional Telegraph Equations and Telegraph Processes with Brownian Time, Probability Theory and Related Fields, 128 (2004), 1, pp. 141-160
- Povstenko, Y., Theories of Thermal Stresses Based on Space-time-fractional Telegraph Equations, Computers & Mathematics with Applications, 64 (2012), 10, pp. 3321-3328
- Yang, X.-J. Theory and Applications of Special Functions for Scientists and Engineers, Springer Nature, New York, USA, 2021
- Yang, X.-J., et al., General Fractional Derivatives with Applications in Viscoelasticity, Academic Press, New York, USA, 2020
- Yang, X.-J., New General Calculi with Respect to Another Functions Applied to Describe the Newton-like Dashpot Models in Anomalous Viscoelasticity, Thermal Science, 23 (2019), 6B, pp. 3751-3757
- Yang, X. J., et al., New Mathematical Models in Anomalous Viscoelasticity from the Derivative with Respect to Another Function View Point, Thermal Science, 23 (2019), 3A, pp. 1555-1561
- Yang, X. J., New Non-Conventional Methods for Quantitative Concepts of Anomalous Rheology, Thermal Science, 23 (2019), 6B, pp. 4117-4127
- Leibniz, G. W., Memoir Using the Chain Rule, Cited in TMME 7:2&3, p. 321-332, 2010, 1676
- Riemann, B. Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Dieterich, Göttingen, 1867
- Stieltjes, T. J., Recherches Sur les Fractions Continues, Comptes Rendus de l’Académie des Sciences Series I - Mathematics, 118 (1894), pp. 1401-1403
- Sommerer, J. C., et al., Experimental Confirmation of the Scaling Theory for Noise-Induced Crises, Physical Review Letters, 66 (1991), 15, pp. 1947
- Werner, J. P., et al., Crisis and Stochastic Resonance in Shinriki’s Circuit, Physica D: Nonlinear Phenomena, 237 (2008), 6, pp. 859-865
- Mandelbrot. B., How Long is the Coast of Britain? Statistical Self-similarity and Fractional Dimension, Science, 156 (1967), 3775, pp. 636-638
- Kohlrausch, R., Theorie des Elektrischen Rckstandes in der leidener Flasche, Annalen der Physik, 167 (1854), 2, pp. 179-214
- Williams, G., Watts, D. C., Non-Symmetrical Dielectric Relaxation Behaviour Arising from a Simple Empirical Decay Function, Transactions of the Faraday society, 66 (1970), pp. 80-85