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The aim of the study is to address the scaling-law telegraph equations with the
Mandelbrot-scaling-law derivative. The traveling-wave solutions with use of the
Kohlrausch-Williams-Watts function are considered in detail. The works are pro-
posed to describe the physical models in complex topology.
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Introduction

The telegraph equations, which are the original tasks proposed by Heaviside in 1876
[1], have been developed to describe the transmission line models with the classical derivative
operator [2], which leads the diffusion problem. The mathematical models for the fractional
telegraph equations based on the Riemann-Liouville sense [3] leads to the power-law behaviors
of the Brownian time [4], and contacted the fractional diffusion process in [5].

The calculus with respect to monotone function (so-called the general calculus) goes
back to many mathematicians, e. g., Leibniz and Stieltjes [6-10]. The Leibniz derivative (so-
called the derivative with respect to monotone function) was proposed by Leibniz in 1676 [11].
Based on the Riemann’s work [12], the Stieltjes-Riemann integral (so-called the integral with
respect to monotone function) was proposed by Stieltjes in 1894 [13]. The scaling-law deriva-
tive (so-called the derivative with respect to scaling-law function) was proposed in [7] and fur-
ther reported in [9]. The scaling-law integral (so-called the integral with respect to scaling-law
function) was proposed in [9]. Their geometric interpretations and the topology calculus were
discussed in [6, 9].

The scaling theory can be applied to the complex circuit, which is experimentally
confirmed in [14,15]. Considering the Brownian time and Mandelbrot-scaling-law behaviors
[16] in the circuit, the aim of the paper is to derive the electrical phenomena, which involve the
Leibniz derivative and Mandelbrot-scaling-law derivative, to propose the scaling-law telegraph
equations and to present the traveling wave solutions via Kohlrausch-Williams-Watts function
[17,18].
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The Leibniz derivative, Stieltjes integral
and scaling-law calculus

The general calculus

Let w, (1) = (v o h)(t) = w[h(1)], where £ (£) > 0, and let N be the set of the integer
numbers.
The Leibniz derivative of the function y,,(¢) is defined [6, 11]:

1 dy, 0

M —
The Leibniz derivative of high-order is defined [6, 11]:
D=4y @
t,h(~)l//h h(l) (t) dr Vi
where n e N.
The Riemann-Stieltjes integral of the function y, (¢) is defined:
b
v = [w 0h® (0de (3)

Here, eqgs. (1) and (3) are called the calculus with respect to monotone function [6].

The scaling-law calculus

Let w (1) = [y o (k1?)](t) = w(xt”), where & is the normalization constant and £ is the
scaling exponent [7, 9].

The scaling-law derivative of the function y(¢) is defined [7]:

1 dy@®
SL ry(D) —
D t)= 4
The scaling-law derivative of high-order is defined [6, 11]:
1 dY
SL ry(n) —
D t)= — t 5
(1) [ﬁmﬂl dt] 70) (5)

where n e N.
The scaling-law integral of the function /(¢) is defined [9]:

t
IOy ()= prefyep’de (6)
Here, eqgs. (4) and (5) are called the scaling-law calculus [6, 7, 9].

Mandelbrot-scaling-law calculus

Let w(¢) = l:l// o(xt'™P )J (1) =w(xt"?), where « is the normalization constant and D
is the scaling exponent.
The Mandelbrot scaling-law function w(¢) is defined as [16]:

g)=r"" ()
where ke R, teR_, and D is the fractal dimension with DeR,.
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The Mandelbrot-scaling-law derivative of the function w(¢) is defined:

MSL (1) _ t? dy ()
DO =T a ®)

The Mandelbrot-scaling-law derivative of high-order is defined:

MSL y(n) P df
Dy (t)=| ——— t 9
O e | YO 9)
where neN.

The Mandelbrot-scaling-law integral of the function w(¢) is defined:

YOy () = (1 - D)k [y (OePdt (10)

Here, eqgs. (8) and (10) are called the Mandelbrot-scaling-law calculus.
The Mandelbrot-scaling-law partial derivative of the function w(x,¢) respect to the
variable x is defined:

D

oy (x,1)

MSL (1)
* (1-D)x ox

w(x,t) = (11)
and the Mandelbrot-scaling-law partial derivative of the function /(x,#) respect to the variable
t as:

? Ow(x,1)

(1-D)x ot

MWy (x, 1) = (12)

The indefinite Mandelbrot-scaling-law integral, which is called the antidifferentiation
with respect to Mandelbrot-scaling-law function, is defined:

MSLT Oy, (r) = (1- D)k j w()Pdt = 0(0)+ 9 (13)
which leads to:
MSLDz(l) I:MSLIt(l)l//(t)] _ MSLDt(l) [q)(t) n 9] _ MSLDt(l)(D(t) =w(t) (14)
and
MSL y (1) [MSLDt‘l)qp(z)] = D)+ 9 (15)

where 9 is the constant.

Let w(t)= A(xtP™), v =A, (xt”™), and w,(t)=A, (xt”™") be continuous
functions.

The properties of the Mandelbrot-scaling-law calculus can be given:
— (S1) The sum and difference rules for the Mandelbrot-scaling-law derivative:

MEDO Ty () £y, ()] = " DV () £ Y DOy, (1) (16)

where MSLDt(l)l//1 (¢) and MSLD,(I)V/Z (¢) exist.
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— (S2) The constant multiple rule for the Mandelbrot-scaling-law derivative:

MSEDO Ly ()] = 1™ DOy (1) (17)

where SLDI(I)(//(t) exists and u is a constant.
— (S3) The product rule for the Mandelbrot-scaling-law derivative:

MEDO [y (w2 (O] = w2 ()™ DV, () +w, () DV, (2) (18)

where " DMy, (£) and ME DMy, (1) exist.
— (S4) The quotient rule for the Mandelbrot-scaling-law derivative:

st pb { v (t)} _ 0" DOy )~y (0" Dy (1) 19)
t =
v, (1) v, (O, (1)
where MSLD,(”y/l (¢) and MSLD}”!//2 (#) exist, and ¢, (¢) # 0.
— (S5) The chain rule for the Mandelbrot-scaling-law derivative:
Yl o]} = dj—? Dy (1) (20)

where dw(y)/dy and MSLD}I)l//(t) exist.
— (S6) The sum and difference rules for the Mandelbrot-scaling-law integral:

L O R A O) St A G Eid A O] @2y
where L1y, (£) and L1y, (1) exist.
— (S7) The integration by parts for the Mandelbrot-scaling-law integral:
YO [y 0 DO () [=[w 0w O], = P [ 0" DMws 0] 2)

where [y, (), (D], = v, (O, (D) =y, (@, (a).
— (S8) The sum and difference rules for the indefinite Mandelbrot-scaling-law integral:

EIO [y () £y, 0] = 1y () £ Ly, (1) (23)
where *5F] t(l)l//1 (¢) and MSLIt(l)l//2 (¢) exist.
— (S9) The integration by parts for the indefinite Mandelbrot-scaling-law integral:
YO [y )" DOy (1) | = v (w0 = Y 1P [y (0 DOy (1) ] (24)

The n — order Mandelbrot-scaling-law partial derivative of the function y (x,?) respect
to the variable x is defined:

D

MSL A(n) _ ! 0
0 xXt)=|——— x,t 25
Oy (x,0) LI_DMJ e (25)
and the »n —order Mandelbrot-scaling-law partial derivative of the function w(x,?) respect to
the variable ¢ as:

D

MSL agn)y/(x, )= {(l—t—D)K%} v (x,t) (26)
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The Mandelbrot-scaling-law-telegraph models with the
traveling-wave solution

The Mandelbrot-scaling-law-telegraph equation

Let us derive the Mandelbrot-scaling-law telegraph equation based on the Mandelbrot-
scaling-law calculus.

The voltage across the resistor, which is derived from the well-known Ohm’s law, is
given:

u(x,t) = Ri(x,t) 27
where R is the resistance of the cable, i(x,?) is the current on the cable at any point x and any
time ¢, and u(x,?) is the voltage on the cable at any point x and any time z.

The voltage drop across the inductor element via Mandelbrot-scaling-law derivative
is given:

D .
u(r ) = LV oWi(x, 1) = L ditoD) (28)
(1-D)x dt
which leads to:
uuﬁziﬂﬁﬂwngzgigfﬁ@ﬁﬁm (29)

where L is denotes the inductance of the cable, « is the normalization constant, and D(0 < D <1)
is the fractal dimension.

The voltage drop across the capacitor element via Mandelbrot-scaling-law integral is
given:

_ 1 vse 1) _ (I-D)x ¢. D
u(x,0) = (0 == [0 dr (30)
which reduces to:
Ct®  du(x,t)

(1-D)yx dt G1

where C denotes the inductance of the cable, x is the normalization constant, and D is the
fractal dimension.
In the telegraphic transmission line with leakage, we present:

i(x,1) = CoVu(x,1) =

U0 __ pice, ) — LM 0Wi(x, 1) (32)

In the current through leakage to the ground, we may give:

Q%?Qz—Gan—CM“dWALQ (33)
X
where G denotes the conductance to the ground.
Finding the Mandelbrot-scaling-law derivative of (32), we have:
Ou(x,t)

0. msL Ay | O .
?_—Ral(x,t)—L 0, al(x,t) (34)
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Substituting eq. (33) into eq. (34), we have:
% u(x,t)
o’

From eq. (35) we have:

= RGu(x,t)+(RC + LG) ™ 0P u(x,t) + LC Y 0P u(x, 1) (35)

d%u(x,t)
o’

which can be written as:

= RGu(x,t) +(RC + LG) ™ 0P u(x,t) + LC Y P u(x, 1) (36)

1 Pu(xn) _RG
LC & LC
Thus, the Mandelbrot-scaling-law-telegraph model reads:

MLy (x,1) + ML 0D (x,1) (37)

u(.t)+ [RC + LG]
LC

0*u(x,t
9* (2 ) _ MSLa§2)

- ML Wy (x, 1) + pu(x,t) (38)
X

u(x,t)+y

or

2

o> (1- D)k ot (1-D)x ot
where 8> =1/(LC), p = RG/(LC), and y = (RC + LG)/(LC).
The Mandelbrot-scaling-law-telegraph model can be repeated as:

*u(x,t) p 07 b Ou(x,t)
0> ——22"2 = q(1)t*P ——u(x,0) + b(x)t? ==L+ pu(x, t 40
P () atz()() Y pu(x,t) (40)
where a(x) =1/[(1- D)*x*] and b(x) = y/[(1- D)x].
The traveling-wave solution
Let us consider the similar variable of Mandelbrot-scaling-law type, given:
z=x+xt"? 41)
where x is the normalization constant, and D is the fractal dimension.
Taking u(x,t) =u(z), we have from eq. (20) that:
0%u(z) _ O’u(x,t)  ou(z) _ MSL 5
oz° ox? 0z !
we have from eq. (38) that:

2
u(x,t), and %: MSLo@y(x,t),  (42a,b, <)
zZ

du(z)  du(z)

0" D)=y =~ pu(z)=0 (43)
with the well-known solution (9 =[y? + 4(6* —1)p]"?), given:
y+8z y—9z
u(z) = 4@ 4 2,2 @D (44)

where 4, and A, are two constants.
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Thus, the traveling-wave solution for eq. (38) can be given:

7+9x 7—9x

u(x,1)= e Ve 4 2 M0 Dt (45)
where &' = Ik / [2(6° - 1)]Dand the Kohlrausch-Williams-Watts function is denoted as [6, 17, 18]
et =" (=0)" £"7P) 1y (For the more details for the functions related to the Kohlrausch-
Williams-Watts function, see [6, 10]).

Conclusion

In this work, we addressed the Mandelbrot-scaling-law calculus to model the scal-
ing-law telegraph models. The traveling-wave solution for the scaling-law telegraph equations
was presented with the aid of the Kohlrausch-Williams-Watts function. The work may be used
to describe the Brownian time and Mandelbrot-scaling-law behaviors in the circuit.
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Nomenclature

i(x,f) — current on the cable, [A] u(x,f) — voltage on the cable, [V]
t — time, [s] X — space co-ordinate, [m]
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