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The aim of the study is to address the scaling-law telegraph equations with the 
Mandelbrot-scaling-law derivative. The traveling-wave solutions with use of the 
Kohlrausch-Williams-Watts function are considered in detail. The works are pro-
posed to describe the physical models in complex topology. 
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Introduction

The telegraph equations, which are the original tasks proposed by Heaviside in 1876 
[1], have been developed to describe the transmission line models with the classical derivative 
operator [2], which leads the diffusion problem. The mathematical models for the fractional 
telegraph equations based on the Riemann-Liouville sense [3] leads to the power-law behaviors 
of the Brownian time [4], and contacted the fractional diffusion process in [5]. 

The calculus with respect to monotone function (so-called the general calculus) goes 
back to many mathematicians, e. g., Leibniz and Stieltjes [6-10]. The Leibniz derivative (so-
called the derivative with respect to monotone function) was proposed by Leibniz in 1676 [11]. 
Based on the Riemann’s work [12], the Stieltjes-Riemann integral (so-called the integral with 
respect to monotone function) was proposed by Stieltjes in 1894 [13]. The scaling-law deriva-
tive (so-called the derivative with respect to scaling-law function) was proposed in [7] and fur-
ther reported in [9]. The scaling-law integral (so-called the integral with respect to scaling-law 
function) was proposed in [9]. Their geometric interpretations and the topology calculus were 
discussed in [6, 9].

The scaling theory can be applied to the complex circuit, which is experimentally 
confirmed in [14,15]. Considering the Brownian time and Mandelbrot-scaling-law behaviors 
[16] in the circuit, the aim of the paper is to derive the electrical phenomena, which involve the 
Leibniz derivative and Mandelbrot-scaling-law derivative, to propose the scaling-law telegraph 
equations and to present the traveling wave solutions via Kohlrausch-Williams-Watts function 
[17, 18]. 
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The Leibniz derivative, Stieltjes integral  
and scaling-law calculus

The general calculus

Let ( ) ( )( ) [ ( )]h t h t h tψ ψ ψ= = , where (1) ( ) 0h t > , and let  be the set of the integer 
numbers.

The Leibniz derivative of the function ( )h tψ  is defined [6, 11]:
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The Leibniz derivative of high-order is defined [6, 11]:

	 ( )
, ( ) (1)

1 d( ) ( )
d( )

n
n

h ht hD t t
th t

ψ ψ⋅
 

=  
 

	 (2)

where n∈. 
The Riemann-Stieltjes integral of the function ( )h tψ  is defined:
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Here, eqs. (1) and (3) are called the calculus with respect to monotone function [6].

The scaling-law calculus

Let ( ) [ ( )]( ) ( )t t t tβ βψ ψ κ ψ κ= = , where κ  is the normalization constant and β  is the 
scaling exponent [7, 9].

The scaling-law derivative of the function ( )tψ  is defined [7]:
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The scaling-law derivative of high-order is defined [6, 11]:
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where n∈. 
The scaling-law integral of the function ( )tψ  is defined [9]:
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Here, eqs. (4) and (5) are called the scaling-law calculus [6, 7, 9].

Mandelbrot-scaling-law calculus

Let 1 1( ) ( ) ( ) ( )D Dt t t tψ ψ κ ψ κ− − = =  , where κ  is the normalization constant and D 
is the scaling exponent.

The Mandelbrot scaling-law function ( )tψ  is defined as [16]:

	 1( ) Dg t tκ −= 	 (7)
where κ +∈ , t +∈ , and D  is the fractal dimension with D +∈ .
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The Mandelbrot-scaling-law derivative of the function ( )tψ  is defined:
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The Mandelbrot-scaling-law derivative of high-order is defined:
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where n∈. 
The Mandelbrot-scaling-law integral of the function ( )tψ  is defined:

	 (1) ( ) (1 ) ( ) d
t

MSL D
a t

a

I t D t t tψ κ ψ= − ∫ 	 (10)

Here, eqs. (8) and (10) are called the Mandelbrot-scaling-law calculus.
The Mandelbrot-scaling-law partial derivative of the function ( , )x tψ  respect to the 

variable x is defined:
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and the Mandelbrot-scaling-law partial derivative of the function ( , )x tψ  respect to the variable 
t as:
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The indefinite Mandelbrot-scaling-law integral, which is called the antidifferentiation 
with respect to Mandelbrot-scaling-law function, is defined:

	 (1) ( ) (1 ) ( ) d ( )MSL D
tI t D t t t tψ κ ψ ϑ= − = Φ +∫ 	 (13)

which leads to:
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and

	 (1) (1) ( ) ( )MSL MSL
t tI D t t ϑ Φ = Φ +  	 (15)

where ϑ  is the constant.
Let 1( ) ( )Dt tψ κ −= Λ , 1

1 1( ) ( )Dt tψ κ −= Λ , and 1
2 2( ) ( )Dt tψ κ −= Λ  be continuous 

functions. 
The properties of the Mandelbrot-scaling-law calculus can be given:

	– (S1) The sum and difference rules for the Mandelbrot-scaling-law derivative:
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	– (S2) The constant multiple rule for the Mandelbrot-scaling-law derivative:

	 (1) (1)[ ( )] ( )MSL MSL
t tD t D tµψ µ ψ= 	 (17)

where (1) ( )SL
tD tψ  exists and µ  is a constant.

	– (S3) The product rule for the Mandelbrot-scaling-law derivative:
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	– (S4) The quotient rule for the Mandelbrot-scaling-law derivative:
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where (1)
1( )MSL

tD tψ  and (1)
2 ( )MSL

tD tψ  exist, and 2 ( ) 0tϕ ≠ .
	– (S5) The chain rule for the Mandelbrot-scaling-law derivative:
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where d ( )/dwψ ψ  and (1) ( )MSL
tD tψ  exist.

	– (S6) The sum and difference rules for the Mandelbrot-scaling-law integral:
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1( )MSL
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	– (S7) The integration by parts for the Mandelbrot-scaling-law integral:
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	– (S8) The sum and difference rules for the indefinite Mandelbrot-scaling-law integral:
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	– (S9) The integration by parts for the indefinite Mandelbrot-scaling-law integral:
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The n – order Mandelbrot-scaling-law partial derivative of the function ( , )x tψ  respect 
to the variable x is defined:
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and the n − order Mandelbrot-scaling-law partial derivative of the function ( , )x tψ  respect to 
the variable t  as:
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The Mandelbrot-scaling-law-telegraph models with the 
traveling-wave solution

The Mandelbrot-scaling-law-telegraph equation

Let us derive the Mandelbrot-scaling-law telegraph equation based on the Mandelbrot-
scaling-law calculus.

The voltage across the resistor, which is derived from the well-known Ohm’s law, is 
given:

	 ( , ) ( , )u x t Ri x t= 	 (27)
where R  is the resistance of the cable, ( , )i x t  is the current on the cable at any point x and any 
time t , and ( , )u x t  is the voltage on the cable at any point x and any time t. 

The voltage drop across the inductor element via Mandelbrot-scaling-law derivative 
is given:

	 (1) d ( , )( , ) ( , )
(1 ) d

D
MSL

t
Lt i x tu x t L i x t

D tκ
= ∂ =

−
	 (28)

which leads to:

	 (1)1 (1 )( , ) ( , ) ( , ) dMSL D
t

Du x t I i x t i x t t t
L L

κ−
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where L is denotes the inductance of the cable, κ  is the normalization constant, and (0 1)D D≤ ≤  
is the fractal dimension. 

The voltage drop across the capacitor element via Mandelbrot-scaling-law integral is 
given:

	 (1)1 (1 )( , ) ( ) ( , ) dMSL D
t

Du x t I t i x t t t
C C

κψ −
= = ∫ 	 (30)

which reduces to:

	 (1) d ( , )( , ) ( , )
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D

t
Ct u x ti x t C u x t

D tκ
= ∂ =

−
	 (31)

where C  denotes the inductance of the cable, κ  is the normalization constant, and D is the 
fractal dimension. 

In the telegraphic transmission line with leakage, we present:

	 (1)( , ) ( , ) ( , )MSL
t

u x t Ri x t L i x t
x

∂
= − − ∂

∂
	 (32)

In the current through leakage to the ground, we may give:

	 (1)( , ) ( , ) ( , )MSL
t

i x t Gu x t C u x t
x

∂
= − − ∂

∂
	 (33)

where G  denotes the conductance to the ground.
Finding the Mandelbrot-scaling-law derivative of (32), we have:
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2

( , ) ( , ) ( , )MSL
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Substituting eq. (33) into eq. (34), we have:
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From eq. (35) we have:
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which can be written as:
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Thus, the Mandelbrot-scaling-law-telegraph model reads:
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or
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where 2 1/( )LCθ = , /( )RG LCρ = , and ( )/( )RC LG LCγ = + .
The Mandelbrot-scaling-law-telegraph model can be repeated as:

	
2 2

2 2
2 2

( , ) ( , )( ) ( , ) ( ) ( , )D Du x t u x ta t u x t b t u x t
tx t

θ κ κ ρ∂ ∂ ∂
= + +
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where 2 2( ) 1/[(1 ) ]a Dκ κ= −  and ( ) /[(1 ) ]b Dκ γ κ= − .

The traveling-wave solution

Let us consider the similar variable of Mandelbrot-scaling-law type, given:

	 1 Dz x tκ −= + 	 (41)
where κ  is the normalization constant, and D  is the fractal dimension.

Taking ( , ) ( )u x t u z= , we have from eq. (20) that:

         
2 2
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z x
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∂
,	 (42a, b, c)

we have from eq. (38) that:
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d ( ) d ( )( 1) ( ) 0
dd

u z u z u z
zz
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with the well-known solution ( 2 2 1/2[ 4( 1) ]ϑ γ θ ρ= + − ), given:

	
2 22( 1) 2( 1)

1 2( ) e e
z z

u z
γ ϑ γ ϑ
θ θλ λ
+ −
− −= + 	 (44)

where 1λ  and 2λ  are two constants. 
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Thus, the traveling-wave solution for eq. (38) can be given:

	
1 12 22( 1) 2( 1)

1 2( , ) e e e e
D D

x x
t tu x t

γ ϑ γ ϑ
ζ ζθ θλ λ

− −
+ −

−− −= + 	 (45)

where 2/[2( 1)]ζ ϑκ θ= −  and the Kohlrausch-Williams-Watts function is denoted as [6, 17, 18] 
( )1 1

0e ( ) / !
D n Dt n

n t nζ ζ
− −− ∞

== −∑  (For the more details for the functions related to the Kohlrausch-
Williams-Watts function, see [6, 10]).

Conclusion

In this work, we addressed the Mandelbrot-scaling-law calculus to model the scal-
ing-law telegraph models. The traveling-wave solution for the scaling-law telegraph equations 
was presented with the aid of the Kohlrausch-Williams-Watts function. The work may be used 
to describe the Brownian time and Mandelbrot-scaling-law behaviors in the circuit.
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Nomenclature
i(x,t)	 –	 current on the cable, [A]
t	 –	 time, [s]

u(x,t)	 –	 voltage on the cable, [V]
x	 –	 space co-ordinate, [m]
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