THERMAL SCIENCE
International Scientific Journal
THE REPRODUCING KERNEL FOR THE REACTION-DIFFUSION MODEL WITH A TIME VARIABLE FRACTIONAL ORDER
ABSTRACT
The variable-order fractional calculus has become a useful mathematical frame-work to describe a complex reaction-diffusion process. It is very hard to solve the problem, and there is almost no analytical method available in open literature. In this article, the reproducing kernel method is proposed for this purpose, and some examples show that the method is of high precision.
KEYWORDS
PAPER SUBMITTED: 2019-04-24
PAPER REVISED: 2019-11-01
PAPER ACCEPTED: 2019-11-01
PUBLISHED ONLINE: 2020-06-21
THERMAL SCIENCE YEAR
2020, VOLUME
24, ISSUE
Issue 4, PAGES [2553 - 2559]
- Song, L., Wang, W., Solution of the Fractional Black-Scholes Option Pricing Model by Finite Difference Method, Abstr. Appl. Anal., 10 (2013), ID 194286
- Huang, F., Liu, F., The Fundamental Solution of the Space-Time Fractional Advection-Dispersion Equation, J. Appl. Math. Comput., 18 (2005), 1-2, pp. 339-350
- Mark, M. M., Charles, T., Finite Difference Approximations for Fractional Advection-Dispersion Flow Equations, J. Comput. Appl. Math., 172 (2004), 1, pp. 65-77
- Li, H., Jiang, W., A Space-Time Spectral Collocation Method for the Two-Dimensional Nonlinear Riesz Space Fractional Diffusion Equations, Math. Meth. Appl. Sci., 41 (2018), 16, pp. 6130-6144
- Wang, Y. L., Du, M. J., Using Reproducing Kernel for Solving a Class of Fractional Partial Differential Equation with Non-Classical Conditions, Appl. Math. Comput., 219 (2013), 11, pp. 5918-5925
- Li, H., et al., Space-Time Spectral Method for the Cattaneo Equation with Time Fractional Derivative, Appl. Math. Comput., 439 (2019), May, pp. 325-336
- Jiang, W., Liu, N., A Numerical Method for Solving the Time Variable Fractional Order Mobile-Immobile Advection-Dispersion Model, Appl. Numer. Math., 119 (2017), Sept., pp. 18-32
- Wang, Y. L., Du, M. J., A Modified Reproducing Kernel Method for a Time-Fractional Telegraph Equation, Thermal Science, 21 (2017), 4, pp. 1575-1580
- Wang, Y. L., An Efficient Computational Method for a Class of Singularly Perturbed Delay Parabolic Partial Differential Equation, Int. J. Comput. Math., 88 (2011), pp. 3496-3506
- Du, M. J., et al., Reproducing Kernel Method for Numerical Simulation of Downhole Temperature Distribution, Appl. Math. Comput., 297 (2017), Mar., pp. 19-30
- Wang, Y. L., et al., A New Method for Solving Singular Fourth-Order Boundary Value Problems with Mixed Boundary Conditions, Appl. Math. Comput., 217 (2011), 18, pp. 7385-7390
- Wang, Y. L., Li, Z. Y., A New Method for Solving a Class of Mixed Boundary Value Problems with Singular Coefficient, Appl. Math. Comput., 217 (2010), 6, pp. 2768-2772
- Wang, Y. L., Su, L. J., Using Reproducing Kernel for Solving a Class of Singularly Perturbed Problems, Comput. Math. Appl., 61 (2011), 2, pp. 421-430
- Wang, Y. L., et al., Using the Iterative Reproducing Kernel Method for Solving a Class of Nonlinear Fractional Differential Equations, Int. J. Comput. Math., 94 (2017), 12, pp. 2558-2572
- Du, M. J., et al., A Modified Reproducing Kernel Method for Solving Burgers' Equation Arising from Diffusive Waves in Fluid Dynamics, Appl. Math. Comput., 315 (2017), Dec., pp. 500-506
- Wang, Y. L., Temuer, C. L., Using Reproducing Kernel for Solving a Class of Singular Weakly Nonlinear Boundary Value Problems, Int. J. Comput. Math., 87 (2010), 2, pp. 367-380
- Jiang W., Li, H., A Space-Time Spectral Collocation Method for the Two-Dimensional Variable-order Fractional Percolation Equations, Comput. Math. Appl., 75 (2018), pp. 3508-3520
- Liu, N., Jiang, W., A Numerical Method for Solving the Time Fractional Schrödinger Equation, Adv. Comput. Math., 2017 (2017), pp. 1-14
- He, J. H., A Tutorial Review on Fractal Space Time and Fractional Calculus, Int J. Theor. Phys., 53 (2014), 11, pp. 3698-718
- He, J. H., Fractal Calculus and Its Geometrical Explanation, Result in physics, 10 (2018), Sept., pp. 272-276
- Ren, Z. F., et al., He's Multiple Scales Method for Nonlinear Vibrations, Journal of Low Frequency Noise Vibration and Active Control, 38 (2019), 3-4, pp. 1708-1712
- He, J. H., Ji, F. Y., Two-Scale Mathematics and Fractional Calculus for Thermodynamics, Thermal Science, 23 (2019), 4, pp. 2131-2133
- Ain, Q. T., He, J. H., On Two-Scale Dimension and Its Applications, Thermal Science, 23 (2019), 3B, pp. 1707-1712
- Wang, Y., et al., A Variational Formulation for Anisotropic Wave Traveling In a Porous Medium, Fractals, 27 (2019), 4, 1950047
- Wang, K. L., He, C. H., A Remark on Wang's Fractal Variational Principle, Fractals, 27 (2019), 8, ID 1950134
- He, J. H., A Simple Approach to One-Dimensional Convection-Diffusion Equation and Its Fractional Modification for E Reaction Arising in Rotating Disk Electrodes, Journal of Electroanalytical Chemis-try, 854 (2019), ID 113565
- Wang, Q. L., et al., Fractal Calculus and Its Application to Explanation of Biomechanism of Polar Bear Hairs, Fractals, 26 (2018), 6, ID 1850086
- Wang, Y., Deng, Q., Fractal Derivative Model For Tsunami Travelling, Fractals, 27 (2019), 1, ID 1950017