THERMAL SCIENCE
International Scientific Journal
DARBOUX TRANSFORM AND CONSERVATION LAWS OF NEW DIFFERENTIAL-DIFFERENCE EQUATIONS
ABSTRACT
Darboux transforms, exact solutions and conservation laws are important topics in thermal science and other fields as well. In this paper, the new non-linear differential-difference equations associated a discrete linear spectral problem are studied analytically. Firstly, the Darboux transform of the studied equations is constructed, and exact solutions are then obtained. Finally, infinite many conservation laws are derived.
KEYWORDS
PAPER SUBMITTED: 2019-04-28
PAPER REVISED: 2019-08-10
PAPER ACCEPTED: 2019-09-08
PUBLISHED ONLINE: 2020-06-21
THERMAL SCIENCE YEAR
2020, VOLUME
24, ISSUE
Issue 4, PAGES [2519 - 2527]
- He, J. H., A Tutorial Review on Fractal Spacetime and Fractional Calculus, International Journal of Theoretical Physics, 53 (2014), 11, pp. 3698-3718
- He, J. H., Fractal Calculus and its Geometrical Explanation, Results in Physics, 10 (2018), Sept., pp. 272-276
- Li, X. X., et al., A Fractal Modification of the Surface Coverage Model for an Electrochemical Arsenic Sensor, Electrochimica Acta, 296 (2019), Feb., pp. 491-493
- Wang, Q. L., et al., Fractal Calculus and its Application to Explanation of Biomechanism of Polar Bear Hairs, Fractals, 26 (2018), 6, 1850086
- Wang, Y., Deng, Q., Fractal Derivative Model for Tsunami Travelling, Fractals, 27 (2019), 1, 1950017
- He, J. H., Ji, F. Y., Two-Scale Mathematics and Fractional Calculus for Thermodynamics, Thermal Science, 23 (2019), 4, pp. 2131-2133
- Ain, Q. T., He, J. H., On Two-Scale Dimension and its Applications, Thermal Science, 23 (2019), 3B, pp. 1707-1712
- He, J. H., Zhu, S. D., Differential-Difference Model for Nanotechnology, Journal of Physics: Conference Series, 96 (2008), 1, ID 012189
- Zhang, S., et al., Differential-Difference Equation Arising in Nanotechnology and its Exact Solutions, Journal of Nano Research, 23 (2013), 1, pp. 113-116
- Zhang, S., Liu, D. D., Infinite Many Conservation Laws of Discrete System Associated with a 3×3 Matrix Spectral Problem, Thermal Science, 21 (2017), 4, pp. 1613-1619
- He, J. H., A Modified Li-He's Variational Principle for Plasma, International Journal of Numerical Meth-ods for Heat and Fluid Flow, On-line first, doi.org/10.1108/HFF-06-2019-0523, 2019
- He, J. H., Lagrange Crisis and Generalized Variational Principle for 3D unsteady flow, International Journal of Numerical Methods for Heat and Fluid Flow, On-line first, doi.org/10.1108/HFF-07-2019-0577, 2019
- He, J. H., Wu, X. H., Exp-Function Method for Non-Linear Wave Equations, Chaos, Solitons and Fractals, 30 (2006), 3, pp. 700-708
- Zhang, S., et al., A Direct Algorithm of Exp-Function Method for Non-Linear Evolution Equations in Fluids, Thermal Science, 20 (2016), 3, pp. 881-884
- Anjum, N., He, J. H., Laplace Transform: Making the Variational Iteration Method Easier, Applied Mathematics Letters, 92 (2019), June, pp. 134-138
- He, J. H., Some Asymptotic Methods for Strongly Nonlinear Equations, International Journal of Modern Physics B, 20 (2006), 10, pp. 1141-1199
- Wu, Y., He, J. H., Homotopy Perturbation Method for Nonlinear Oscillators with Coordinate Dependent Mass., Results in Physics, 10 (2018), Sept., pp. 270-271
- Wu, Y., He, J. H., A Remark on Samuelson's Variational Principle in Economics, Applied Mathematics Letters, 84 (2018), Oct., pp. 143-147
- He, J. H., Hamilton's Principle for Dynamical Elasticity, Applied Mathematics Letters, 72 (2017), Oct., pp. 65-69
- He, J. H., Ji, F. Y., Taylor Series Solution for Lane-Emden Equation, Journal of Mathematical Chemistry, 57 (2019), 8, pp. 1932-1934
- He, J. H., The Simplest Approach to Nonlinear Oscillators, Results in Physics, 15 (2019), Dec., ID 102546
- Matveev, V. B., Salle, M. A., Darboux Transformation and Solitons, Springer-Verlag: Berlin, Germany, 1991
- Tian, Y., Symmetry Reduction a Promising Method for Heat Conduction Equations, Thermal Science, 23 (2019 ), 4, pp. 2219-2227
- Tian, Y., Diffusion-Convection Equations and Classical Symmetry Classification, Thermal Science, 23 (2019), 4, pp. 2151-2156
- Bai, Y. S., Zhang, Q., Perturbed Korteweg-de Vries Equations Symmetry Analysis and Conservation Laws, Thermal Science, 23 (2019), 4, pp. 2281-2289
- Xu, X. X., A Family of Integrable Differential-Difference Equations, its Bi-Hamiltonian Structure and Binary Nonlinearization of the Lax Pairs and Adjoint Lax Pairs, Chaos, Solitons & Fractals, 45 (2012), 4, pp. 444-453