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Darboux transforms, exact solutions and conservation laws are important topics
in thermal science and other fields as well. In this paper, the new non-linear dif-
ferential-difference equations associated a discrete linear spectral problem are
studied analytically. Firstly, the Darboux transform of the studied equations is con-
structed, and exact solutions are then obtained. Finally, infinite many conservation
laws are derived.
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Introduction

When continuum hypothesis is no longer valid, fractal calculus [1-5], two-scale ther-
modynamics [6, 7] and differential-difference equations (DDE) [8, 9] often are considered as
useful candidates to describe some phenomena like those arising in heat/electron conduction,
flow in carbon nanotubes and nanoporous materials. Discussing the conservation laws [10] and
variational formulations [11, 12] plays an important role in the study of integrability of soliton
equations. For a given (1+1)-D DDE, the conservation law of which can be written as
oT/ot+(E-1)X =0, here T — the conservation density and X — the conservation flow, which
are related to the potential function u(n, t). In the field of non-linear mathematical physics, there
exist many effective methods, for examples, the exp-function method [13, 14], the variational
iteration method [15], the homotopy perturbation method [16, 17], the variational method [11,
12, 18, 19], the Taylor series method [20], He’s frequency formulation [21], for solving non-
linear PDE. Among them, the Darboux transform (DT) [22] is a gauge transform which trans-
forms the spectral problem into another spectral problem of the same form. Based on a suitable
seed solution, the DT can be utilized to construct exact solutions of non-linear PDE.

In this paper, we would like to construct conservation laws [23-25], DT, and exact
solutions of the following new non-linear DDE [26]:
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which are associated with the discrete linear spectral problem:

Eqﬂn =0n1 = Un¢n 2
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where /At = 0 is the spectral parameter, ¢, = (gul’n,(pzvn)T — the eigenfunction vector, T — the
transpose of the matrix, E — the shift operator defined by Ef(n,t)=f(n+Lt)=f
E™f(nt)=f(n—1Lt)=f,_,, rh=ra(t) and s, = sx(t) — the potential functions.

n+ls

Darboux transform of eqs. (1)
Constructing the DT of eq. (1) is to find such a gauge transform:

& =T (6)

of egs. (2) and (3) so that ¢, satisfies another discrete linear spectral problem with the same
formal Lax pair:

(ﬁn+1 = Un(ﬁn (7)
(Zn,t =Vn@n (8)
where Ty is a two-order undetermined matrix, and:
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Namely:

Tn+1Un :UnTn' Tn,t +Tnvn :VnTn (11)

For this purpose, we suppose that:

T :{(1+bn)/1+an by }

12
C, A+d, (12)

where an, bn, ¢n, and d, are all functions of n and t to be determined later. Take two basic solu-
tions of egs. (2) and (3) when A = Ai:

2 (/1]' ) =le, (/11' ) P (lj )]T 4 (/1,') =[y., (//Lj ) Wan (ﬂ*j )]T (13)



Zhang, S., et al.: Darboux Transform and Conservation Laws of ...
THERMAL SCIENCE: Year 2020, Vol. 24, No. 4, pp. 2519-2527 2521

If there exist constants y; (j = 1, 2) satisfying:
[(1+ bn )ﬂ'j + an](/a.,n (j“j) + bn¢2,n (ﬂ'j ) - 7j{[(1+ bn)ﬂ“j + aﬂ]l//l,n (j“j ) + bnl/IZ,n (ﬂ'j )} =0 (14)

qu)l,n (ﬂ'j ) + (lj + dn)¢2,n (ﬂ“j) - 7j [Cnl//l,n (ﬂj ) + (ﬂ’j + dn)l//z,n (ﬁj )] =0 (15)
which can be equivalently rewritten as a linear system:
[A+b,)4; +a,]+0;b, =0, ¢, +0j(4; +d,)=0 (16)
where
o :¢2,n(ﬁ’j)_7j§”2,n(/1j) 19 17
A7 Ev 78 L (47
then we solve eq. (16) and obtain:
o - M= Aoy() Ay~ 18)
Ay —H +0,(n) —oy(n) Ay =4 +0,(n) -y ()
o Lo, -4) , _ai-o00)4 (19)
" oy (n)—op(n) oz(n)—o1(n)
oj(n+1)= ! oj(n-1)= 1701 +51) (20)

lj rﬂ + Sn + rnO-J (n) rn_lﬁj (n)

From egs. (12), (16), and (17), we can see that detT(4) is a quadratic polynomial in A.
When detT(4) = 0, egs. (18)-(20) show an+1, bn+1, Cr+1, and dn+1 Satisfy the following equations:

MChi = bn’ rndn+1 =ayh, — Snbn
ra, (@+b,)=@Q+b,,IA+b,)(s.b, +d,r,)—a,b,r,] (21)
[(a'n+lsn + bn+1)(1'" bn) - rnaﬂan+l](1+ bn) = (1+ bn+l)[(ansn +1Cy )(1+ bn) - ar%rn] (22)

Theorem 1. When the matrix U,, determined by eq. (7) has the same form as U, in eq.
(4), the transforms:

1+ bn+:L r 5 = Sn (1+ bn+l) +Mhan — anrn

==l 23
"o+ b, non 1+b, 23)
map the old potential functions r, and s, into new potential functions T, and §,,.
Proof. Let T, =T."/detT, and:
f..(A,n) f,(1,n
ThaU nTn* = |: 11( ) 12( ):| (24)
for(4,n)  fn(4,n)

then we have:
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f11(A,n) = A%, (L+B,) + 2280, + (S + A )L+ by, )] +
+A[bn g + a4 (s, +d, 1) + @ +bg)(dS, — ¢ )]+ (84S, +Phia)d, —a,.C (25)
Fip (A1) = %0, (B +1) + A2yl + (@nky —byS, )L+ by 0)]+ (8y 80l — 80,40 Sy —byg) +
+ Abyg + 85,4 (S, +d, 1) + (@ +by3)(dS, —Ca)]+ (@3Sy +Pni1)dn —ag4Cal, (26)
fi2 (A1) = 21, (0.1 +2) + Aty + @l —bysy)(L+by0)]+
+(@,a,,1 — 21410,8, —0,Prs1) (27)
f00(2,0) = A2 (Craaly +1) + AUCoyaSn + Ay +Craglily +dp) +
+(¢,4d,S, +d,d,.1 —CiCrialy) (28)

f22 (ﬂ" I’l) = ﬂ“(cn+lrn - bn) + (ancn+1rn - bnCn+1Sn - bndn+1) (29)

which hint f11(/, n) is a cubic polynomial in A, fi2(4, #) and f21(4, ») are all quadratic polynomials
in A, and f22(4, n) = 0. Thus, eq. (24) can be rewritten:

Tn+1UnTn* = (dEtTn)Pn (30)
where
(R0 R M -
) =
P (n) 0
From egs. (30) and (31), we have:
T..Un =BT, (32)
and determine that:
r (1 b ) Sn (1+ bn+l) + rnanJrl - %‘Lbnﬂ)
P(l) n) =0 T0ha , P(O) n) = n 33
W =2 ROm o (33)
rn (1+ bn+ ) rnCn+
M=y 9
by comparing the coefficients of /2, 4, and A% in eq. (32).
In view of egs. (21)-(23), we obtain:
RY(M =7, RYP(M=5, RYM=F, PYM=1 (35)

That is to say P, =U,. The proof of Theorem 1 is end.
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Theorem 2. Under the transforms (6) and (23), the matrix V, in eq. (8) can be deter-
mined through eq. (10) which has the same form as V, in eq. (5).

Proof. Supposing T.* =T/ detT, and letting:

911(4,n)  gpp(4, n)}

(36)
U21(4,n)  gpp(4,0)

(Tn,t + TV )Tn* :|:
similarly we have:

011 (4,1) =%z3+ 22 {%+M+b&t N dn(12+ bn)}

M

+/1{anyt+a”5” + by +dn{i+M+bn’t}—cn(l+b?”]}+

n rn -1 2 rn

ansn + b_nj - Cn (an + bn,t) (37)
rn rn—l

+dn[an't +

O (A,0) = A+ b, ) A2+ ﬂ{(an b, )A+by) + 3, (1+%“]—bn {%MMWM }}

n

+a,(a, +b,,)—b, (am + 2 b—"] (38)

n rn -1

2
+cn]/12 +ﬂb[cn’t 1 Sn%n +&+cndnJ+

n-1 I fha
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+dn[cn't+ nn o N
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92 (4,N) =—1+2b” A3 —{d"(]'; bn) +a—”}12 +

c, , 1 d,
J{(dm+Cn)(1+bn)_bn[?+aj_an2 }1

b, [cn,t 1 GSa , G ]+(o|mt rc.)a, (40)

h Tha

which show g11(4, n) and gz2(4, ) are all cubic polynomials in 4, gi2(/, #) and g21(4, ») are all
quadratic polynomials in 4. It is easy to see from egs. (2) and (3) that:

1

rn -1

o

it = —[ﬂj +Sr—”JGJ- () -of(n), j=12 (41)
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From egs. (18), (19) and (41), we have:

A - (401t =402 )(Ap — Ay + 0y —01) = (o1 — 410,)(0 — O14) (42)
(% - A+ 05— 0y)°

L -A)og—on)  _(h—A)otoy ~oj0y)
" (h—h+oy-0y) " (01~ 07)°
d, = (4 — A)(020; —010%;) (43)

(07— ‘71)2

On the other hand, we can easy to see that (T, +T,V, )T = (detT,)R,, here:

RY (MA+RY (n) RY (n)
n = © o) © (44)
R3(n) R3; (M)A + Ry’ (n)
and hence have:
Tn’t +T.V, =R,T, (45)
Comparing the coefficients of 42, 4, and A° in eq. (45) yields:
b d
Oy=0 4 0t RO =Sy nt 46
Riy’ (n) ¢ T1tb (n)= b, bn (46)
Ot RO O __ L RO
Rj_l (n) - Er R12 (n) _1! R22 (n) - _El R (n) 0 (47)
and hence we have:
b b — b
ant+ansn+b_n: S_n+ nt a, +Cp, s_n+L’t:M+L't (48)
: o rha o 1+hb, r, 1+b, b, b,
¢, dnt ¢ 1 c_n+%:%_¢+cnsn+ d, (49)

n
—0 — + ,
bn bn 1+ bn (1 + bn ) rn -1 bn bn an an rn an r.n -1
Substituting egs. (42) and (43) into egs. (48) and (49), we can verify egs. (48) and (49)
all hold. At the same time, by a direct computation we obtain:
RO (M) ==, RY ()= (50)

Sn
' [

Equations (44), (47) and (50) clearly tell that R, =V,,. Thus, we finish the proof of
Theorem 2.

Exact solutions

In this section, we employ the DT (6) and (23) to construct exact solutions of eq. (1).
Firstly, we select a pair of seed solutions ry, = s, = 1. Secondly, we obtain two basic solutions
of the discrete linear spectral problem (2) and (3):
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Pin (ij) ‘L’lne'o1t Yin (,’Lj) 2.glepzt
Aj)= = ) (i) = = 51
ek LZ*”(AJ)} {Tln_leplt] Valts) I:I//Z,n(ﬂ‘j):| (rg_lepzt 1)

:(,11.+1)+a/(zj+1)2+4 Tzz(zj+1)— (4 +D)° +4 )

Tl l

2 2
1+1f(/1j +1)% +4 1—ﬂ/(/1j +1)% +4 -
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From egs. (21) and (22), we have:

_ (1+ bn+1)[(1+ bn)(bn + dn) B anbn]
n+l —
1+b,

where

(b, +d,-a,)1+b,-a,)—-c,

By = 54
"4 (@ By 0y )L+, —8) 6, ~ 0+ By) &9
Substituting the seed solutions r, = s, = 1 into eq. (23), we have:
(Fn’gn) _ 1+ bn+1 'l+ bn+1 +ayq —aglh, (55)
1+h, 1+b,

where an, bn, Cn, and d, are determined by egs. (16), an+1 and bn+1 are determined by eq. (55),
and gj (j = 1, 2) is determined by eq. (17). We, therefore, determine the new solutions (T;,S;,)
of egs. (1) by one-fold DT.

Conservation laws
Fromegs. (2) and (4), we have @, 4 = (Ar, +S,)@; , + @, 1, Which can be written:

1=(Ar, +5s,)0, +1.,6,_16, (56)

by introducing 6, =@, /@1 4.
On the other hand, from egs. (3) and (5) we have:

A S 1 A
Drnt = [E + ij Pun T Prin1y Pont = E(Dl,n _E(PZ,n (57)
which lead to:
_(Ingn)t _ Prnt _% (58)
(pl,m-l ¢l,n
namely

—(In8,), :(E—l)(%+sr—“+9n1] (59)

n
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If we set:
6, =601 (60)
j=1
then eq. (56) becomes:
1=(An +5,)Y. 0947+ | > 00T > A7) (61)
j=1 j=1 j=1
Comparing the coefficients with same order of 1 in eq. (61), we have:
2
o=, o= g9 2 (62
rn rn I’n rn rn—l
and so forth. At the same time, a recursion is derived:
m-1
o) _i{snegm S egkiegm—k)}, m>2 ©3)
I k=1
Substituting eq. (60) into eq. (59), we have:
~[In> DT =(E-1) i+s—“+29§1}ﬂ (64)
-1 X 2 L 3

which can be written as:

k
(Inr.), + Z(—l)kl Ly oA =(E-1) i+s—“+29n<1>1/1-i (65)
k=1 k j=1 . 2 1 i=t

Comparing each of the coefficients with same order of 1 in eq. (65), we obtain the
following infinite many conservation laws of egs. (1):

2
(In rn)t :(E_l)s_nv [S_nJ Z(E—l)i, [i_is_nJ :—(E—l Snz—l (66)
t t

n n fha M1
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