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Darboux transforms, exact solutions and conservation laws are important topics 
in thermal science and other fields as well. In this paper, the new non-linear dif-
ferential-difference equations associated a discrete linear spectral problem are 
studied analytically. Firstly, the Darboux transform of the studied equations is con-
structed, and exact solutions are then obtained. Finally, infinite many conservation 
laws are derived. 
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Introduction  

When continuum hypothesis is no longer valid, fractal calculus [1-5], two-scale ther-

modynamics [6, 7] and differential-difference equations (DDE) [8, 9] often are considered as 

useful candidates to describe some phenomena like those arising in heat/electron conduction, 

flow in carbon nanotubes and nanoporous materials. Discussing the conservation laws [10] and 

variational formulations [11, 12] plays an important role in the study of integrability of soliton 

equations. For a given (1+1)-D DDE, the conservation law of which can be written as 

/ ( 1) 0T t E X     , here T – the conservation density and X – the conservation flow, which 

are related to the potential function u(n, t). In the field of non-linear mathematical physics, there 

exist many effective methods, for examples, the exp-function method [13, 14], the variational 

iteration method [15], the homotopy perturbation method [16, 17], the variational method [11, 

12, 18, 19], the Taylor series method [20], He’s frequency formulation [21], for solving non-

linear PDE. Among them, the Darboux transform (DT) [22] is a gauge transform which trans-

forms the spectral problem into another spectral problem of the same form. Based on a suitable 

seed solution, the DT can be utilized to construct exact solutions of non-linear PDE. 

In this paper, we would like to construct conservation laws [23-25], DT, and exact 

solutions of the following new non-linear DDE [26]: 
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which are associated with the discrete linear spectral problem: 

 1n n n nE U     (2) 
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where λt = 0 is the spectral parameter, 1, 2,( , )T
n n n   – the eigenfunction vector, T – the 

transpose of the matrix, E – the shift operator defined by 1( , ) ( 1, ) ,nEf n t f n t f     
1

1( , ) ( 1, ) ,nE f n t f n t f
    rn = rn(t) and sn = sn(t) – the potential functions. 

Darboux transform of eqs. (1) 

Constructing the DT of eq. (1) is to find such a gauge transform:  

 n n nT   (6) 

of eqs. (2) and (3) so that n  satisfies another discrete linear spectral problem with the same 

formal Lax pair: 

 1n n nU    (7) 

 ,n t n nV   (8) 

where Tn is a two-order undetermined matrix, and:  
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Namely: 

 1 ,,n n n n n t n n n nT U U T T T V V T     (11) 

For this purpose, we suppose that: 
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where an, bn, cn, and dn are all functions of n and t to be determined later. Take two basic solu-

tions of eqs. (2) and (3) when λ = λi: 

 1, 2, 1, 2,( ) [ ( ), ( )] , ( ) [ ( ), ( )]T T

n j n j n j n j n j n j              (13) 



 

If there exist constants γj (j = 1, 2) satisfying: 

1, 2, 1, 2,[(1 ) ] ( ) ( ) {[(1 ) ] ( ) ( )} 0n j n n j n n j j n j n n j n n jb a b b a b                   (14) 

 1, 2, 1, 2,( ) ( ) ( ) [ ( ) ( ) ( )] 0n n j j n n j j n n j j n n jc d c d                 (15) 

which can be equivalently rewritten as a linear system: 

 [(1 ) ] 0, ( ) 0n j n j n n j j nb a b c d           (16) 

where 
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then we solve eq. (16) and obtain: 
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From eqs. (12), (16), and (17), we can see that detT(λ) is a quadratic polynomial in λ. 

When detT(λ) = 0, eqs. (18)-(20) show an+1, bn+1, cn+1, and dn+1 satisfy the following equations: 

 1 1,n n n n n n n n nr c b r d a r s b      

 1 1(1 ) (1 )[(1 )( ) ]n n n n n n n n n n n nr a b b b s b d r a b r        (21) 

 2
1 1 1 1[( )(1 ) ](1 ) (1 )[( )(1 ) ]n n n n n n n n n n n n n n n na s b b r a a b b a s r c b a r             (22) 

Theorem 1. When the matrix nU  determined by eq. (7) has the same form as Un in eq. 

(4), the transforms:  
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map the old potential functions rn and sn into new potential functions nr  and .ns  

Proof. Let 1 / detn n nT T T  and: 

 
11 12

1
21 22

( , ) ( , )

( , ) ( , )
n n n

f n f n
T U T

f n f n

 

 




 
  
 

 (24) 

then we have: 
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 1 1 1( )n n n n n n n na a r a b s b b      (27) 

2
21 1 1 1 1( , ) ( 1) ( )n n n n n n n n nf n c r c s d c d r d             

 1 1 1( )n n n n n n n nc d s d d c c r      (28) 

 22 1 1 1 1( , ) ( ) ( )n n n n n n n n n n nf n c r b a c r b c s b d           (29) 

which hint f11(λ, n) is a cubic polynomial in λ, f12(λ, n) and f21(λ, n) are all quadratic polynomials 

in λ, and f22(λ, n) = 0. Thus, eq. (24) can be rewritten: 

 1 (det )n n n n nT U T T P
   (30) 

where 
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From eqs. (30) and (31), we have: 

 1n n n nT U P T   (32) 

and determine that: 
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by comparing the coefficients of λ2, λ, and λ0 in eq. (32). 

In view of eqs. (21)-(23), we obtain: 

 (1) (0) (0) (0)
11 11 12 21( ) , ( ) , ( ) , ( ) 1n n nP n r P n s P n r P n     (35) 

That is to say .n nP U  The proof of Theorem 1 is end. 



 

Theorem 2. Under the transforms (6) and (23), the matrix nV  in eq. (8) can be deter-

mined through eq. (10) which has the same form as Vn in eq. (5). 

Proof. Supposing 1 / detn n nT T T  and letting: 
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similarly we have: 
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which show g11(λ, n) and g22(λ, n) are all cubic polynomials in λ, g12(λ, n) and g21(λ, n) are all 

quadratic polynomials in λ. It is easy to see from eqs. (2) and (3) that: 
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From eqs. (18), (19) and (41), we have: 
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On the other hand, we can easy to see that *
,( ) (det ) ,n t n n n n nT T V T T R  here: 
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and hence have: 

 ,n t n n n nT T V R T   (45) 

Comparing the coefficients of λ2, λ, and λ0 in eq. (45) yields: 

 
, ,(0) (0)

11 21( ) , ( )
1

n t n tn n

n n n n

b ds c
R n R n

r b b b
   


 (46) 

 (1) (0) (1) (0)
11 12 22 22

1 1
( ) , ( ) 1, ( ) , ( ) 0

2 2
R n R n R n R n      (47) 

and hence we have: 

 
, , ,

,
1

,
1 1

n t n t n tn n n n n n n
n t n n

n n n n n n n n

b b ba s b s s a d
a a c

r r r b r b b b

  
        

  
 (48) 

 
, , ,

1 1

1
,

1 (1 )

n t n t n tn n n n n n

n n n n n n n n n n n n

d d cc c c c s d

b b b b r b b a a r a r 

      
 

 (49) 

Substituting eqs. (42) and (43) into eqs. (48) and (49), we can verify eqs. (48) and (49) 

all hold. At the same time, by a direct computation we obtain: 
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Equations (44), (47) and (50) clearly tell that .n nR V Thus, we finish the proof of 

Theorem 2. 

Exact solutions 

In this section, we employ the DT (6) and (23) to construct exact solutions of eq. (1). 

Firstly, we select a pair of seed solutions rn = sn = 1. Secondly, we obtain two basic solutions 

of the discrete linear spectral problem (2) and (3): 
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From eqs. (21) and (22), we have: 

1
1

(1 )[(1 )( ) ]
,

1

n n n n n n
n

n

b b b d a b
a

b




   



 

 1

( )(1 )

( )(1 ) (1 )

n n n n n n
n

n n n n n n n

b d a b a c
b

a b d b a c b


    


      
 (54) 

Substituting the seed solutions rn = sn = 1 into eq. (23), we have: 
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where an, bn, cn, and dn are determined by eqs. (16), an+1 and bn+1 are determined by eq. (55), 

and σj (j = 1, 2) is determined by eq. (17). We, therefore, determine the new solutions ( , )n nr s  

of eqs. (1) by one-fold DT. 

Conservation laws 

From eqs. (2) and (4), we have 1, 1 1, 1, 1( ) ,n n n n n nr s r        which can be written: 

 11 ( )n n n n n nr s r       (56) 
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Comparing the coefficients with same order of λ in eq. (61), we have: 
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and so forth. At the same time, a recursion is derived: 
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Substituting eq. (60) into eq. (59), we have: 
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which can be written as: 
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Comparing each of the coefficients with same order of λ in eq. (65), we obtain the 

following infinite many conservation laws of eqs. (1): 
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