THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

PREDICTION OF THE CONTACT THERMAL RESISTANCE OF VERTICAL CARBON NANOTUBE ARRAYS

ABSTRACT
The Vertical carbon nanotube arrays (VACNTs), as a result of its flexibility and axial high thermal conductivity, exert a huge potential and play an increasingly important role in thermal interface materials (TIMs). This paper proposed a model which can predict the contact thermal resistance of VACNTs. The contact thermal resistance of VACNTs under different pressures is calculated and compared with the experimental data. Also, the effect of variations in the surface roughness and VACNTs parameters on the contact thermal resistance is investigated. Results show that the theoretical results are in good agreement with the experimental data. The contact thermal resistance is composed of interfacial thermal resistance, constriction thermal resistance, and VACNTs resistance. Among which the interfacial thermal resistance is the major thermal resistance. The variations in VACNTs-length and diameter can change the bending degree of VACNTs under the same pressure, which presents important implications on contact thermal resistance and can be used to optimize the contact thermal resistance of VACNTs. The surface roughness exerts little effect on contact thermal resistance.
KEYWORDS
PAPER SUBMITTED: 2018-06-25
PAPER REVISED: 2018-08-07
PAPER ACCEPTED: 2018-09-26
PUBLISHED ONLINE: 2018-10-06
DOI REFERENCE: https://doi.org/10.2298/TSCI180625289S
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2020, VOLUME 24, ISSUE Issue 2, PAGES [745 - 756]
REFERENCES
  1. Viswanath, R., et al., Thermal Performance Challenges from Silicon to Systems, Intel Corporation Tech Rep. (2000), 3
  2. Shaikh, S., et al., Thermal Conductivity of an Aligned Carbon Nanotube Array, Carbon., 45. (2007), 13, pp. 2608-2613, DOI No. 10.1016/j.carbon.2007.08.011
  3. Xie, H., et al., Thermal Diffusivity and Conductivity of Multiwalled Carbon Nanotube Arrays, Physics Letters A, 369. (2007), 1-2, pp. 120-123, DOI No. 10.1016/j.physleta.2007.02.079
  4. Choi, T.Y., et al., Measurement of Thermal Conductivity of Individual Multiwalled Carbon Nanotubes by the 3-ω Method, Applied Physics Letters, 87. (2005), 1, p. 56, DOI No. 10.1063/1.1957118
  5. Zhang, Y., et al., Compliance Properties Study of Carbon Nanofibres (CNFs) Array as Thermal Interface Material, Journal of Physics D Applied Physics, 41. (2008), 15, p. 155105, DOI No. 10.1088/0022-3727/41/15/155105
  6. Zhang, K., et al., Carbon Nanotube Thermal Interface Material for High-brightness Light-emittingdiode Cooling, Nanotechnology, 19. (2008), 21, p. 215706, DOI No. 10.1088/0957-4484/19/21/215706
  7. Zhang, G., et al., Temperature Dependence of Thermal Boundary Resistances between Multiwalled Carbon Nanotubes and Some Typical Counterpart Materials, Acs Nano, 6. (2012), 6, pp. 3057-3062, DOI No. 10.1021/nn204683u
  8. Wang, H., et al., Reducing Thermal Contact Resistance Using a Bilayer Aligned CNT Thermal Interface Material, Chemical Engineering Science, 65. (2010), 3, pp. 1101-1108, DOI No. 10.1016/j.ces.2009.09.064
  9. Khanh, H.L., et al., Enhancement of the Thermal Properties of a Vertically Aligned Carbon Nanotube Thermal Interface Material Using a Tailored Polymer, Jornal of Ald Hy, 11. (2012), 4, pp. 1 - 4
  10. Xu, J.,T.S. Fisher, Enhancement of thermal interface materials with carbon nanotube arrays, International Journal of Heat & Mass Transfer, 49. (2006), 9, pp. 1658-1666, DOI No. 10.1016/j.ijheatmasstransfer.2005.09.039
  11. Li, Q., et al., Thermal Boundary Resistances of Carbon Nanotubes in Contact with Metals and Polymers, Nano Letters, 9. (2009), 11, p. 3805, DOI No. 10.1021/nl901988t
  12. Hirotani, J., et al., Experimental Study on Interfacial Thermal Resistance between Carbon Nanotube and Solid Material(Thermal Engineering), Transactions of the Japan Society of Mechanical Engineers B, 76. (2010), pp. 1412-1419, DOI No. 10.1299/kikaib.76.769_1412
  13. Kong, Q.Y., et al., Novel Three-dimensional Carbon Nanotube Networks as High Performance Thermal Interface Materials, Carbon, 132. (2018), pp. 359-369, DOI No. 10.1016/j.carbon.2018.02.052
  14. Kaur, S., et al., Enhanced Thermal Transport at Covalently Functionalized Carbon Nanotube Array Interfaces, Nature Communications, 5. (2014), 2, pp. 1661-1667, DOI No. 10.1038/ncomms4082
  15. Sun, S., et al., Improving Thermal Transport at Carbon Hybrid Interfaces by Covalent Bonds, Advanced Materials Interfaces, 1800318. (2018), pp. 1-9, DOI No. 10.1002/admi.201800318
  16. Hu, G.J.,B.Y. Cao, Thermal Resistance Between Crossed Carbon Nanotubes: Molecular Dynamics Simulations and Analytical Modeling, Journal of Applied Physics, 114. (2013), 22, p. 96, DOI No. 10.1063/1.4842896
  17. Yovanovich, M.M., Four Decades of Research on Thermal Contact, Gap, and Joint Resistance in Microelectronics, Transactions on Components & Packaging Technologies, 28. (2005), 2, pp. 182-206, DOI No. 10.1109/TCAPT.2005.848483
  18. Leung, M., et al., Prediction of Thermal Contact Conductance in Vacuum by Statistical Mechanics, Journal of Heat Transfer, 120. (1998), 1, pp. 51-57, DOI No. 10.1115/1.2830064
  19. Ying, J., et al., Theoretical and Experimental Research on the Contact Thermal Resistance between Real Surface, Journal of Zhenjiang Universiey(Mechanical Engineering), 1. (1997), 1, pp. 104-109
  20. Xin, H., et al., Buckling and Axially Compressive Properties of Perfect and Defective Single-walled Carbon Nanotubes, Carbon., 45. (2007), 13, pp. 2486-2495, DOI No. 10.1016/j.carbon.2007.08.037
  21. Mesarovic, S.D., et al., Mechanical Behavior of a Carbon Nanotube Turf, Scripta Materialia, 56. (2007), 2, pp. 157-160, DOI No. 10.1016/j.scriptamat.2006.09.021
  22. Liu, Y.Z., Nonlinear Mechanics of Thin Elastic Rod. 2006, Tsinghua University Press: Beijing.
  23. Bahrami, M., et al., Thermal Contact Resistance of Nonconforming Rough Surfaces, Part 1: Contact Mechanics Model, Journal of Thermophysics and Heat Transfer, 18. (2004), 2, pp. 218-227, DOI No. 10.2514/1.2661
  24. Bahrami, M., et al., Thermal Contact Resistance of Nonconforming Rough Surfaces, Part 2: Thermal Model, Journal of Thermophysics and Heat Transfer, 18. (2004), 2, pp. 218-227, DOI No. 10.2514/1.2664
  25. Greenwood, J.A.,J.P. Williamson. Contact of Nominally Flat Surfaces,Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,1966,295, pp. 300-319
  26. Chang, W.R., et al., An Elastic-Plastic Model for the Contact of Rough Surfaces, Journal of Tribology, 109. (1987), 2, pp. 257-263, DOI No. 10.1115/1.3261348
  27. Huang, H.,X. Xu, Effects of Surface Morphology on Thermal Contact Resistance, Thermal Science, 15. (2011), 5, pp. 33-38
  28. Kang, J.W.,H.J. Hwang, An Ultrathin Carbon Nanoribbon Study as a Component of Nanoelectromechanical Devices, Molecular Simulation, 31. (2005), 8, pp. 561-565, DOI No. 10.1080/08927020500044954
  29. Kang, J.W., et al., Molecular Dynamics Study of Hypothetical Silicon Nanotubes Using the Tersoff Potential, Journal of Nanoscience & Nanotechnology, 2. (2002), 6, p. 687, DOI No. 10.1166/jnn.2002.146
  30. Saidi, P., et al., An Embedded Atom Method Interatomic Potential for the Zirconium-iron System, Computational Materials Science, 133. (2017), pp. 6-13, DOI No. 10.1016/j.commatsci.2017.02.028
  31. Eich, S.M.,G. Schmitz, Embedded-atom Study of Low-energy Equilibrium Triple Junction Structures and Energies, Acta Materialia, 109. (2016), pp. 364-374, DOI No. 10.1016/j.actamat.2016.02.058
  32. Mahdavi, M.H., et al., Nonlinear Vibration of a Single-walled Carbon Nanotube Embedded in a Polymer Matrix Aroused by Interfacial Van Der Waals Forces, Journal of Applied Physics, 106. (2009), 11, p. 56, DOI No. 10.1063/1.3266174
  33. Fuller, J.J.,E.E. Marotta, Thermal Contact Conductance of Metal/Polymer Joints: An Analytical and Experimental Investigation, Journal of Thermophysics and Heat Transfer, 15. (2001), 2, pp. 228-238, DOI No. 10.2514/2.6598
  34. Cooper, M.G., et al., Thermal Contact Conductance, International Journal of heat and mass transfer, 12. (1969), 3, pp. 279-300, DOI No. 10.1016/0017-9310(69)90011-8
  35. Eric, P., et al., Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature, Nano Letters, 6. (2006), 1, pp. 96-100, DOI No. 10.1021/nl052145f
  36. Fujii, M., et al., Measuring the Thermal Conductivity of a Single Carbon Nanotube, Physical Review Letters, 95. (2005), 6, p. 065502, DOI No. 10.1103/PhysRevLett.95.065502
  37. Bi, K.D., et al., Molecular Dynamics Simulation of Thermal Conductivity of Single-wall Carbon Nanotubes, Physics. Letters. A., 350. (2006), 1, pp. 150-153, DOI No. 10.1016/j.physleta.2005.09.070
  38. Xu, J.,T.S. Fisher, Enhanced Thermal Contact Conductance Using Carbon Nanotube Array Interfaces, Transactions on Components & Packaging Technologies, 29. (2006), 2, pp. 261-267

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence