THERMAL SCIENCE

International Scientific Journal

HEAT TRANSFER ON MAGNETOHYDRODYNAMIC STAGNATION POINT FLOW THROUGH A POROUS SHRINKING/STRETCHING SHEET: A NUMERICAL STUDY

ABSTRACT
This article examines the numerical study of heat transfer analysis on MHD stagnation point flow past a permeable shrinking/stretching sheet through a porous media. The governing equations have been reduced to the ODE by utilizing similarity variables. The obtained highly non-linear coupled differential equations have been solved by implementing a numerical scheme labeled as successive linearization method. The influences for the pertinent parameters on velocity profile and temperature profile is debated and demonstrated graphically. Numerical comparisons in some special cases have been brought along the prevailing literature, and it is noticed that the current outcomes are in good concord.
KEYWORDS
PAPER SUBMITTED: 2018-10-25
PAPER REVISED: 2019-02-16
PAPER ACCEPTED: 2019-02-22
PUBLISHED ONLINE: 2019-03-09
DOI REFERENCE: https://doi.org/10.2298/TSCI181025067A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2020, VOLUME 24, ISSUE Issue 2, PAGES [1335 - 1344]
REFERENCES
  1. K. Hiemenz, Die grenzschicht an einem in den gleichformigen flussigkeitsstrom einge tauchten geraden kreiszylinder, Dinglers Polytech. J. 326 (1911) 321-324.
  2. L. J. Crane, Flow past a stretching plate, Zeitschrift fu¨r angewandte Mathematik und Physik ZAMP 21 (4) (1970) 645-647.
  3. J. Paullet, P. Weidman, Analysis of stagnation point flow toward a stretching sheet, International Journal of Non-Linear Mechanics 42 (9) (2007) 1084-1091.
  4. K. Bhattacharyya, S. Mukhopadhyay, G. C. Layek, Slip effects on boundary layer stagnationpoint flow and heat transfer towards a shrinking sheet, International Journal of Heat and Mass Transfer 54 (1-3) (2011) 308-313.
  5. K. Das, Slip effects on mhd mixed convection stagnation point flow of a micropolar fluid towards a shrinking vertical sheet, Computers & Mathematics with Applications 63 (1) (2012) 255-267.
  6. N. S. Akbar, A. Ebaid, Z. H. Khan, Numerical analysis of magnetic field effects on eyringpowell fluid flow towards a stretching sheet, Journal of Magnetism and Magnetic Materials 382 (2015) 355-358.
  7. A. Majeed, A. Zeeshan, R. Ellahi, Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux, Journal of Molecular Liquids 223 (2016) 528-533.
  8. A. Shahid, M. M. Bhatti, O. A. B´eg, A. Kadir, Numerical study of radiative maxwell viscoelastic magnetized flow from a stretching permeable sheet with the cattaneo-christov heat flux model, Neural Computing and Applications (2017) 1-12.
  9. M. M. Bhatti, M. M. Rashidi, Numerical simulation of entropy generation on mhd nanofluid towards a stagnation point flow over a stretching surface, International Journal of Applied and Computational Mathematics 3 (3) (2017) 2275-2289.
  10. H. Rosali, A. Ishak, R. Nazar, J. H. Merkin, I. Pop, The effect of unsteadiness on mixed convection boundary-layer stagnation-point flow over a vertical flat surface embedded in a porous medium, International Journal of Heat and Mass Transfer 77 (2014) 147-156.
  11. H. Rosali, A. Ishak, I. Pop, Stagnation point flow and heat transfer over a stretch- ing/shrinking sheet in a porous medium, International Communications in Heat and Mass Transfer 38 (8) (2011) 1029-1032.
  12. M. M. Rashidi, B. Rostami, N. Freidoonimehr, S. Abbasbandy, Free convective heat and mass transfer for mhd fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects, Ain Shams Engineering Journal 5 (3) (2014) 901-912.
  13. B. C. Prasannakumara, B. J. Gireesha, R. S. R. Gorla, M. R. Krishnamurthy, Effects of chemical reaction and nonlinear thermal radiation on williamson nanofluid slip flow over a stretching sheet embedded in a porous medium, Journal of Aerospace Engineering 29 (5) (2016) 04016019.
  14. S. S. Ghadikolaei, K. Hosseinzadeh, M. Yassari, H. Sadeghi, D. D. Ganji, Boundary layer analysis of micropolar dusty fluid with tio2 nanoparticles in a porous medium under the effect of magnetic field and thermal radiation over a stretching sheet, Journal of Molecular Liquids 244 (2017) 374-389.
  15. A. Subhas, P. Veena, Visco-elastic fluid flow and heat transfer in a porous medium over a stretching sheet, International Journal of Non-Linear Mechanics 33 (3) (1998) 531-540.
  16. M. R. Eid, K. L. Mahny, Flow and heat transfer in a porous medium saturated with a sisko nanofluid over a nonlinearly stretching sheet with heat generation/absorption, Heat TransferAsian Research 47 (1) (2018) 54-71.
  17. M. A. El-Aziz, Dual solutions in hydromagnetic stagnation point flow and heat transfer towards a stretching/shrinking sheet with non-uniform heat source/sink and variable surface heat flux, Journal of the Egyptian Mathematical Society 24 (3) (2016) 479-486.
  18. F. Mabood, W. A. Khan, A. M. Ismail, Mhd stagnation point flow and heat transfer im- pinging on stretching sheet with chemical reaction and transpiration, Chemical Engineering Journal 273 (2015) 430-437.
  19. T. Hayat, M. Qasim, S. Mesloub, Mhd flow and heat transfer over permeable stretching sheet with slip conditions, International Journal for Numerical Methods in Fluids 66 (8) (2011) 963-975.
  20. F. Aman, A. Ishak, I. Pop, Magnetohydrodynamic stagnation-point flow towards a stretch- ing/shrinking sheet with slip effects, International Communications in Heat and Mass Transfer 47 (2013) 68-72.
  21. M. H. M. Yasin, A. Ishak, I. Pop, Mhd stagnation-point flow and heat transfer with effects of viscous dissipation, joule heating and partial velocity slip, Scientific reports 5 (2015) 17848.
  22. M. M. Bhatti, M. M. Rashidi, Entropy generation with nonlinear thermal radiation in mhd boundary layer flow over a permeable shrinking/stretching sheet: numerical solution, Journal of Nanofluids 5 (4) (2016) 543-548.
  23. M. M. Bhatti, T. Abbas, M. M. Rashidi, Numerical study of entropy generation with nonlinear thermal radiation on magnetohydrodynamics non-newtonian nanofluid through a porous shrinking sheet, Journal of Magnetics 21 (3) (2016) 468-475.
  24. Rashidi, M. M., Zhigang, Y. A. N. G., Bhatti, M. M., & Abbas, M. A, Heat and Mass Transfer Analysis on MHD Blood Flow of Casson Fluid Model due to Peristaltic Wave. Thermal Science, 22(6A) (2018) 2439-2448.
  25. A. Shahid, Z. Zhou, M. M. Bhatti, D. Tripathi, Magnetohydrodynamics nanofluid flow containing gyrotactic microorganisms propagating over a stretching surface by successive taylor series linearization method, Microgravity Science and Technology (2018) 1-11.
  26. M. M. Bhatti, M. A. Abbas, M. M. Rashidi, A robust numerical method for solving stag- nation point flow over a permeable shrinking sheet under the influence of mhd, Applied Mathematics and Computation 316 (2018) 381-389.
  27. M. M. Bhatti, T. Abbas, M. M. Rashidi, Entropy generation as a practical tool of optimisation for non-newtonian nanofluid flow through a permeable stretching surface using slm, Journal of Computational Design and Engineering 4 (1) (2017) 21-28.
  28. C. Y. Wang, Stagnation flow towards a shrinking sheet, International Journal of Non-Linear Mechanics 43 (5) (2008) 377-382.
  29. Mekheimer, K. S., Salem, A. M., & Zaher, A. Z., Peristaltically induced flow due to a surface acoustic wavy moving wall, Chinese Journal of Physics, 51(5) (2013) 968-982.
  30. Mekheimer, K. S., Salem, A. M., & Zaher, A. Z, peristaltically induced MHD slip flow in a porous medium due to a surface acoustic wavy wall, Journal of the Egyptian Mathematical Society, 22(1) (2014) 143-151.

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence