THERMAL SCIENCE
International Scientific Journal
A PILOT STUDY FOR THE PYROLYSIS OF THE UREA FORMALDEHYDE-MELAMINE FORMALDEHYDE RESIN PAPER WASTE
ABSTRACT
Producing pyrolytic oil via pyrolysis reaction from waste papers containing melamine formaldehyde and urea formaldehyde, which have an economic and environmental value, is the base of this study. In this study gas, liquid and solid products were gained via pyrolysis, and liquid products are put into perspective from the point of energy. In this pilot study, positive results were obtained for comprehensive further experiments, and it’s seen that the results may have meaningful value on sectoral basis with regards to reducing environmental damages of the wastes and energy producing.
KEYWORDS
PAPER SUBMITTED: 2018-10-23
PAPER REVISED: 2018-11-26
PAPER ACCEPTED: 2019-01-15
PUBLISHED ONLINE: 2019-03-09
THERMAL SCIENCE YEAR
2019, VOLUME
23, ISSUE
Supplement 1, PAGES [S253 - S266]
- Goyal, H.B., Seal, D; Saxseno, R.C. Bio-fuels from thermochemical conversion of renewable resources: A review. Renewable and Sustainable Energy Reviews, 12 (2008), pp. 504-517
- Pranjali D. M., Henkel, C., Abdollahi K. K., Marculescu C., Boldor D. A, Critical comparison of pyrolysis of cellulose, lignin, and pine sawdust using an induction heating reactor. Energy Conversion and Management , 117 (2016), pp. 273-280
- Üçgül, İ., Akgül, G., Biyokütle teknolojisi, Yekarum Dergi, 1 (2010), pp. 3-11
- Skodras, G., Grammelis, P., Basinas, P., Kakaras, E., Sakellaropoulos, G., Pyrolysis combustion characteristics of biomass and waste-derived feedstock. Ind. Eng. Chem. Res., 45 (2006), pp. 3791-3799
- Shen, D. K., Gu, S. The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technology, 100 (2009), pp. 6496-6504
- Probstein, R. F., Hicks, R. E., Synthetic Fuels. Mc Graw-Hill Book Company: New York, 1982
- Girods, P., Dufour, A., Rogaume, Y., Rogaume, C., Zoulalian A., Thermal removal of nitrogen species from wood waste containing urea formaldehyde and melamine formaldehyde resins. Journal of Hazardous Materials, 159 (2008), pp. 210-221
- Al Shra'ah, A., Helleur, R., Microwave pyrolysis of cellulose at low temperature. Journal of Analytical and Applied Pyrolysis,105 (2014), pp. 91-99
- Li. S. J., Mu, J., Zhang, Y., Influence of urea formaldehyde resin on pyrolysis of biomass: a modeling study by tg-ftır. Spectroscopy and Spectral Analysis, 34 (2014) , 6, pp. 1497 - 1501
- Bridgwater, A. V., Cottom, L.M., Costs and Opportunities for Biomass Pyrolysis Liquids Production and Upgrading. In Biomass for Energy, Industry and Environment, 6th E.C. Conference; Grassi, G.; Collina A.; Zibetta H., Eds; Elsevier Applied Science: London and New York, 1992, pp. 679-692
- Girods, P., Dufour, A., Rogaume, Y., Rogaume, C., Zoulalian A., Pyrolysis of wood waste containing urea-formaldehyde and melamine-formaldehyde resins. J. Anal. Appl. Pyrolysis, 81 (2008), pp. 113-120
- Girods, P., Rogaume, Y., Dufour, A., Rogaume, C., Zoulalian A., Low-Temperature pyrolysis of wood waste containing urea-formaldehyde resin. Renewable Energy, 33 (2008), pp. 648-654
- Girods, P., Dufour, A., Rogaume, Y., Rogaume, C., Zoulalian A., Comparison of gasification and pyrolysis of thermal pre-treated wood board waste. Journal of Analytical and Applied Pyrolysis, 85 (2009), pp. 171-183
- Impregnated Paper , www.starwood.com.tr /tr/emprenyeli-kagit.
- Bridgwater, A. V., Review of fast pyrolysis of biomass and product upgrading. Biomass and Bio Energy, 38 (2012), pp. 68-94
- Li, Z. et, all., Design and operation of a down-tube reactor demonstration plant for biomass fast pyrolysis. Fuel Processing Technology, 161 (2017), pp. 182-192
- Bridgwater A. V., The production of biofuels and renewable chemicals by fast pyrolysis of biomass. Int. J. Global Energy Issues, 27 (2007), 2, pp. 160-203
- Daugaard D.E., Brown, R.C., Enthalpy for pyrolysis for several types of biomass, Energy&Fuels, 17 (2003), 4, pp. 934-939
- Bardalai M., Mahanta, D., A review of physical properties of biomass pyrolysis oil, International Journal Of Renewable Energy Research, 5 (2015), pp. 277-286
- Ingram, L. D., Mohan, D. M., Bricka, M. P., Steele, P.D., Strobel, D., Crocker, D., et al. Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils, Energy&Fuels, 22 (2008), pp. 614-625
- Vispute T., Pyrolysis oils: characterization, stability analysis, and catalytic upgrading to fuels and chemicals. Ph. D. Thesis. University of Massachusetts. Chemical Engineering Dep. Massachusetts. 2011.
- Volpe, R., Menendez J. M. B., Reina, T. R., Messineo, A., Millan, M., Evolution of chars during slow pyrolysis of citrus waste. Fuel Processing Technology, 158 (2017), pp. 255-263
- Johari, K., Saman, N., Song, S. T., Cheu S. C., Kong, H., Mat, H., Development of coconut pith chars towards high elemental mercury adsorption performance Effect of pyrolysis temperatures. Chemosphere, 156 (2016), pp. 56-68
- Wilk, M., Magdziarz, A., Kalemba I., Gara, P., Carbonisation of wood residue into charcoal during low temperature process. Renewable Energy, 85 (2016), pp. 507-513.
- Park, J., Lee,Y., Ryu, C., Park, Y. K., Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields. Bioresource Technology, 155 (2014), pp. 63-70
- Ciolkosz, D., Wallace, R., A review of torrefaction for bioenergy feedstock production. Biofpr, 5 (2011), 3, pp. 317-329.
- Van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A., Ptasinski, K. J., Biomass Upgrading By Torrefaction For The Production Of Biofuels: A Review. BioMass and BioEnergy, 35 (2011), pp. 3748-3762
- Wang, S., Dai, G., Ru, B., Zhao, Y., Wang, X., Xiao, G., Luo, Z. Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose. Energy, 120 (2017), pp. 864-871
- Solar, J., de Marco, I., Caballero, B.M., Lopez-Urionabarrenechea, A., Rodriguez, N., Agirre, I., et al. Influence of temperature and residence time in the pyrolysis of woody biomass waste ın a continuous screw reactor. Biomass and Bioenergy, 95 (2016), pp. 416-423
- Ningboa, G., Baolinga, L., Aimina, L., Juanjuan L., Continuous pyrolysis of pine sawdust at different pyrolysis temperatures and solid residence times. Journal of Analytical and Applied Pyrolysis, 114 (2015), pp. 155-162
- Morgan, T. J., Turn, S. Q., George, A., Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor. Plos One, 10 (2015), 8, pp. 1-28.
- Haiping, Y., Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86 (2016), pp. 1781-1788
- Myers, G. E., Koutsky, J. A., Formaldehyde Liberation and Cure Behavior of Urea-Formaldehyde Resins. Holzforschung, 44 (1990), 2, pp. 117-126
- Ullah, S., Bustam, M. A., Nadeem, M., Naz, M. Y., Tan, W. L., Shariff, A. M., Synthesis and Thermal Degradation Studies of Melamine Formaldehyde Resins. Hindawi Publishing Corporation Scientific World Journal. 2014, pp. 1-6
- Yu, H., Zhang, Z., Li, Z., Chen, D., Characteristics of tar formation during cellulose, hemicellulose and lignin gasification. Fuel, 118 (2014), pp. 250-256
- Balat, M., Balat, M., Kırtay, E., Balat, H., Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conversion and Management, 50 (2009), pp. 3147-3157.
- Morris, M. A., Production of bio-oils via catalytic pyrolysis. In Handbook of Biofuels Production Processes and Technologies. Luque, R., Campelo, J., Clark, J., Eds.; Woodhead Publishing: Cambridge, 1 (2011), pp 349-389
- Yaman, S., Pyrolysis of Biomass to Produce Fuels and Chemical Feedstocks. Energy Conversion and Management, 45 (2004), pp. 651-671.
- Wilk, M., Magdziarz, A., Kalemba, I., Gara, P., Carbonisation of wood residue into charcoal during low temperature process. Renewable Energy, 85 (2016), pp. 507-513
- Bermudez, J. M., Fidalgo, B., Production of bio-syngas and bio-hydrogen via gasification. In Handbook of Biofuels Production. Luque, R., Ki Lin, C. S., Wilson, K., Clark, J. Eds., Woodhead Publishing: Cambridge, 2 (2016), pp 431-494
- Ling, C. T., San, H. P., Kyin, E. H., Hua, L. S., Chen, L. W., Yee, C. Y., Yield and Calorific Value of Bio Oil Pyrolysed from Oil Palm Biomass and its Relation with Solid Residence Time and Process Temperature. Asian Journal of Scientific Research, 8 (2015), 3, pp. 351-358
- Lehto, J., Oasmaa, A., Solantausta, Y., Kytö, M., Chiaramonti, D., Review of Fuel Oil Quality and Combustion of Fast Pyrolysis Bio-Oils from Lignocellulosic Biomass. Applied Energy, 116 (2014), pp. 178-190
- Bridgwater, A. V., Biomass Fast Pyrolysis. Thermal Science, 8 (2004), 2, pp. 21 - 49
- Wongkhorsub, C., Chindaprasert, N., A Comparison of the Use of Pyrolysis Oils in Diesel Engine. Energy and Power Engineering, 5 (2013), pp. 350-355
- Torres, A., de Marco, I., Caballero, B. M., Laresgoiti, M. F., Legarreta, J. A., et al. Recycling by pyrolysis of thermoset composites: characteristics of the liquid and gaseous fuels obtained. Fuel, 79 (2000), pp. 897-902
- Raveendran, K., Ganesh, A., Heating value of biomass and biomass pyrolysis products. Fuel, 75 (1996), 15, pp. 1715-1720
- Demirbaş, A., Determination Of Calorific Values Of Bio-Chars And Pyro-Oils From Pyrolysis Of Beech Trunkbarks. J. Anal. Appl. Pyrolysis, 72 (2004), pp. 215-219.
- Feng, Y., Mu, J., Chen, S., Huang, Z., Zhiming Yu., The Influence of Urea Formaldehyde Resins on Pyrolysis Characteristics and Products of Wood-Based Panels. Bioresources, 7 (2012), 4, pp. 4600 - 4613.
- Zhdanova, A. O., Kuznetsov, G. V., Legros, J. C.,Strizhak, P. A., Thermal Conditions For Stopping Pyrolysis Of Forest Combustible Material And Applications To Firefighting. Thermal Science, 21 (2017), 6A, pp. 2565 - 2577